Asymptotic behavior of 2D stably stratified fluids with a damping term in the velocity equation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 43

This article deals with the asymptotic behavior of the two-dimensional inviscid Boussinesq equations with a damping term in the velocity equation. Precisely, we provide the time-decay rates of the smooth solutions to that system. The key ingredient is a careful analysis of the Green kernel of the linearized problem in Fourier space, combined with bilinear estimates and interpolation inequalities for handling the nonlinearity.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021045
Classification : 35Q35, 35B40
Keywords: Stratified fluids, Boussinesq approximation, Green function analysis, dispersion relation homogeneous of degree 0, anisotropic decay rates
@article{COCV_2021__27_1_A45_0,
     author = {Bianchini, Roberta and Natalini, Roberto},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {Asymptotic behavior of {2D} stably stratified fluids with a damping term in the velocity equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021045},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021045/}
}
TY  - JOUR
AU  - Bianchini, Roberta
AU  - Natalini, Roberto
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - Asymptotic behavior of 2D stably stratified fluids with a damping term in the velocity equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021045/
DO  - 10.1051/cocv/2021045
LA  - en
ID  - COCV_2021__27_1_A45_0
ER  - 
%0 Journal Article
%A Bianchini, Roberta
%A Natalini, Roberto
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T Asymptotic behavior of 2D stably stratified fluids with a damping term in the velocity equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021045/
%R 10.1051/cocv/2021045
%G en
%F COCV_2021__27_1_A45_0
Bianchini, Roberta; Natalini, Roberto. Asymptotic behavior of 2D stably stratified fluids with a damping term in the velocity equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 43. doi: 10.1051/cocv/2021045

[1] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier analysis and nonlinear partial differential equations. Vol. 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg (2011).

[2] K. Beauchard and E. Zuazua, Large time asymptotics for partially dissipative hyperbolic systems. Arch. Ration. Mech. Anal. 199 (2011) 177–227.

[3] R. Bianchini, Uniform asymptotic and convergence estimates for the Jin-Xin model under the diffusion scaling. SIAM J. Math. Anal. 50 (2018) 1877–1899.

[4] R. Bianchini, M. Coti Zelati and M. Dolce, Linear inviscid damping for shear flows near Couette in the 2D stably stratified regime. Preprint (2020). | arXiv

[5] R. Bianchini, A.-L. Dalibard and L. Saint-Raymond, Near-critical reflection of internal waves. Anal. PDE 14 (2021) 205–249.

[6] S. Bianchini, B. Hanouzet and R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Commun. Pure Appl. Math. 60 (2007) 1559–1622.

[7] A. Castro, D. Córdoba and D. Lear, On the asymptotic stability of stratified solutions for the 2D Boussinesq equations with a velocity damping term. Math. Models Methods Appl. Sci. 29 (2019) 1227–1277.

[8] F. Charve, Global well-posedness and asymptotics for a geophysical fluid system. Commun. Partial Differ. Equ. 29 (2004) 1919–1940.

[9] J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Mathematical geophysics. An introduction to rotating fluids and the Navier-Stokes equations. Vol. 32 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, Oxford (2006).

[10] R. Danchin and M. Paicu, Global existence results for the anisotropic Boussinesq system in dimension two. Math. Models Methods Appl. Sci. 21 (2011) 421–457.

[11] B. Desjardins, D. Lannes and J.-C. Saut, Normal mode decomposition and dispersive and nonlinear mixing in stratified fluids. arXiv e-prints (2019).

[12] C. R. Doering, J. Wu, K. Zhao and X. Zheng, Long time behavior of the two-dimensional Boussinesq equations without buoyancy diffusion. Phys. D 376/377 (2018) 144–159.

[13] T. M. Elgindi, On the asymptotic stability of stationary solutions of the inviscid incompressible porous medium equation. Arch. Ration. Mech. Anal. 225 (2017) 573–599.

[14] T. M. Elgindi and K. Widmayer, Sharp decay estimates for an anisotropic linear semigroup and applications to the surface quasi-geostrophic and inviscid Boussinesq systems. SIAM J. Math. Anal. 47 (2015) 4672–4684.

[15] B. Hanouzet and R. Natalini, Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Arch. Ration. Mech. Anal. 169 (2003) 89–117.

[16] T. Kato, Perturbation theory for linear operator. Vol. 132 of 2nd ed. Grundlehren der Mathematischen Wissenschaften. Springer, New York (1976).

[17] M. Rieutord, Fluid Dynamics: An Introduction. Graduate Texts in Physics. Springer International Publishing (2015).

[18] Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14 (1985) 249–275.

[19] L. Tao, J. Wu, K. Zhao and X. Zheng, Stability near hydrostatic equilibrium to the 2D Boussinesq equations without thermal diffusion. Arch. Ration. Mech. Anal. 237 (2020) 585–630.

[20] R. Wan, Global well-posedness for the 2D Boussinesq equations with a velocity damping term. Discrete Contin. Dyn. Syst. 39 (2019) 2709–2730.

[21] R. Wan, Long time stability for the dispersive SQG equation and Boussinesq equations in Sobolev space H$$. Commun. Contemp. Math. 22 (2020) 1850063.

[22] R. Wan and J. Chen, Global well-posedness for the 2D dispersive SQG equation and inviscid Boussinesq equations. Z. Angew. Math. Phys. 67 (2016) 104.

[23] W.-A. Yong, Entropy and global existence for hyperbolic balance laws. Arch. Ration. Mech. Anal. 172 (2004) 247–266.

Cité par Sources :