Discrete-time mean field games with risk-averse agents
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 44

We propose and investigate a discrete-time mean field game model involving risk-averse agents, each of them controlling a linear dynamical system. The model under study is a coupled system of dynamic programming equations with a Kolmogorov equation. The agents’ risk aversion is modeled by composite risk measures. The existence of a solution to the coupled system is obtained with a fixed point approach. The corresponding feedback control allows to construct an approximate Nash equilibrium for a related dynamic game with finitely many players.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021044
Classification : 91A16, 91A50, 93E20, 91B30
Keywords: Risk measures, mean field games, approximate Nash equilibria, Cournot equilibria
@article{COCV_2021__27_1_A46_0,
     author = {Fr\'ed\'eric Bonnans, J. and Lavigne, Pierre and Pfeiffer, Laurent},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {Discrete-time mean field games with risk-averse agents},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021044},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021044/}
}
TY  - JOUR
AU  - Frédéric Bonnans, J.
AU  - Lavigne, Pierre
AU  - Pfeiffer, Laurent
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - Discrete-time mean field games with risk-averse agents
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021044/
DO  - 10.1051/cocv/2021044
LA  - en
ID  - COCV_2021__27_1_A46_0
ER  - 
%0 Journal Article
%A Frédéric Bonnans, J.
%A Lavigne, Pierre
%A Pfeiffer, Laurent
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T Discrete-time mean field games with risk-averse agents
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021044/
%R 10.1051/cocv/2021044
%G en
%F COCV_2021__27_1_A46_0
Frédéric Bonnans, J.; Lavigne, Pierre; Pfeiffer, Laurent. Discrete-time mean field games with risk-averse agents. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 44. doi: 10.1051/cocv/2021044

[1] Y. Achdou, F. J. Buera, J.-M. Lasry, P.-L. Lions and B. Moll, Partial differential equation models in macroeconomics. Philo. Trans. R. Soc. A 372 (2014) 20130397.

[2] C. Alasseur, I. B. Tahar and A. Matoussi, An extended mean field game for storage in smart grids. J. Optim. Theory Appl. 2020 (2020) 1–27.

[3] P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk. Math. Finance 9 (1999) 203–228.

[4] Basel Committee on Banking Supervision, Messages from the academic literature on risk measurement for the tradingbook (2011).

[5] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces. CMS Books in Mathematics. Springer-Verlag New York (2011).

[6] C. Bertucci, S. Vassilaras, J.-M. Lasry, G. S. Paschos, M. Debbah and P.-L. Lions, Transmit strategies for massive machine-type communications based on mean field games. In 2018 15th International Symposium on Wireless Communication Systems (ISWCS). IEEE (2018) 1–5.

[7] J. F. Bonnans, S. Hadikhanloo and L. Pfeiffer, Schauder estimates for a class of potential mean field games of controls. Appl. Math. Optim. 2019 (2019) 1–34.

[8] P. Cardaliaguet and C.-A. Lehalle, Mean field game of controls and an application to trade crowding. Math. Financial Econ. 12 (2018) 335–363.

[9] P. Cheridito and M. Kupper, Composition of time-consistent dynamic monetary risk measures in discrete time. Int. J. Theor. Appl. Finance 14 (2011) 137–162.

[10] H. Föllmer and A. Schied, Stochastic finance: an introduction in discrete time. Walter de Gruyter (2011).

[11] N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields 162 (2015) 707–738.

[12] P. J. Graber and A. Bensoussan, Existence and uniqueness of solutions for Bertrand and Cournot mean field games. Appl. Math. Optim. 2015 (2015) 1–25.

[13] P. J. Graber, V. Ignazio and A. Neufeld, Nonlocal Bertrand and Cournot mean field games with general nonlinear demand schedule. Preprint (2020). | arXiv

[14] O. Guéant, J.-M. Lasry and P.-L. Lions, Mean Field Games and Applications. Springer Berlin, Heidelberg (2011) 205–266.

[15] M. Huang, R. P. Malhamé and P. E. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221–252.

[16] M. Huang, R. P. Malhamé and P. E. Caines, Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized ε-nash equilibria. IEEE Trans. Autom. Control 52 (2007) 1560–1571.

[17] Z. Kobeissi, On classical solutions to the mean field game system of controls. Preprint (2019). | arXiv

[18] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. i–le cas stationnaire. Comp. Rendus Math. 343 (2006) 619–625.

[19] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. ii–horizon fini et contrôle optimal. Comp. Rendus Mathématique 343 (2006) 679–684.

[20] J.-M. Lasry and P.-L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260.

[21] J. Moon and T. Başar, Linear quadratic risk-sensitive and robust mean field games. IEEE Trans. Autom. Control 62 (2017) 1062–1077.

[22] L. Pfeiffer, Optimality conditions in variational form for non-linear constrained stochastic control problems. Math. Control Related Fields 10 (2020) 493–526.

[23] A. Ruszczyński, Risk-averse dynamic programming for Markov decision processes. Math. Program. 125 (2010) 235–261.

[24] A. Ruszczyński and A. Shapiro, Conditional risk mappings. Math. Oper. Res. 31 (2006) 544–561.

[25] N. Saldi, T. Başar and M. Raginsky, Markov–Nash equilibria in mean-field games with discounted cost. SIAM J. Control Optim. 56 (2018) 4256–4287.

[26] A. Shapiro, Minimax and risk averse multistage stochastic programming. Eur. J. Oper. Res. 219 (2012) 719–726. Feature Clusters.

[27] H. Tembine, Q. Zhu and T. Başar, Risk-sensitive mean-field games. IEEE Trans. Autom. Control 59 (2014) 835–850.

[28] C. Villani, Optimal transport: Old and New. Springer Verlag (2008).

Cité par Sources :

This work was supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH, and by the FIME Lab (Laboratoire de Finance des Marchés de l’Energie), Paris.