Linear convergence of accelerated conditional gradient algorithms in spaces of measures
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 38

A class of generalized conditional gradient algorithms for the solution of optimization problem in spaces of Radon measures is presented. The method iteratively inserts additional Dirac-delta functions and optimizes the corresponding coefficients. Under general assumptions, a sub-linear $$ rate in the objective functional is obtained, which is sharp in most cases. To improve efficiency, one can fully resolve the finite-dimensional subproblems occurring in each iteration of the method. We provide an analysis for the resulting procedure: under a structural assumption on the optimal solution, a linear $$ convergence rate is obtained locally.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021042
Classification : 46E27, 65J22, 65K05, 90C25, 49M05
Keywords: Vector-valued finite Radon measures, generalized conditional gradient, sparsity, nonsmooth optimization
@article{COCV_2021__27_1_A40_0,
     author = {Pieper, Konstantin and Walter, Daniel},
     title = {Linear convergence of accelerated conditional gradient algorithms in spaces of measures},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021042},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021042/}
}
TY  - JOUR
AU  - Pieper, Konstantin
AU  - Walter, Daniel
TI  - Linear convergence of accelerated conditional gradient algorithms in spaces of measures
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021042/
DO  - 10.1051/cocv/2021042
LA  - en
ID  - COCV_2021__27_1_A40_0
ER  - 
%0 Journal Article
%A Pieper, Konstantin
%A Walter, Daniel
%T Linear convergence of accelerated conditional gradient algorithms in spaces of measures
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021042/
%R 10.1051/cocv/2021042
%G en
%F COCV_2021__27_1_A40_0
Pieper, Konstantin; Walter, Daniel. Linear convergence of accelerated conditional gradient algorithms in spaces of measures. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 38. doi: 10.1051/cocv/2021042

[1] S. D. Ahipasaoglu, P. Sun and M. J. Todd, Linear convergence of a modified Frank-Wolfe algorithm for computing minimum-volume enclosing ellipsoids. Optim. Methods Softw. 23 (2008) 5–19.

[2] C. D. Aliprantis and K. C. Border, Infinite dimensional analysis. A hitchhiker’s guide. Springer, Berlin, third ed. (2006).

[3] J.-M. Azaïs, Y. De Castro and F. Gamboa, Spike detection from inaccurate samplings. Appl. Comput. Harmon. Anal. 38 (2015) 177–195.

[4] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2 (2009) 183–202.

[5] V. I. Bogachev, Vols. I, II of Measure theory. Springer-Verlag, Berlin (2007).

[6] N. Boyd, G. Schiebinger and B. Recht, The alternating descent conditional gradient method for sparse inverse problems. SIAM J. Optim. 27 (2017) 616–639.

[7] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3 (2011) 1–122.

[8] K. Bredies and M. Carioni, Sparsity of solutions for variational inverse problems with finite-dimensional data. Calc. Var. 59 (2020).

[9] K. Bredies and H. K. Pikkarainen, Inverse problems in spaces of measures. ESAIM: COCV 19 (2013) 190–218.

[10] E. J. Candès and C. Fernandez-Granda, Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67 (2014) 906–956.

[11] M. D. Canon and C. D. Cullum, A tight upper bound on the rate of convergence of Frank-Wolfe algorithm. SIAM J. Control 6 (1968) 509–516.

[12] E. Casas, C. Clason and K. Kunisch, Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50 (2012) 1735–1752.

[13] E. Casasand E. Zuazua, Spike controls for elliptic and parabolic PDEs. Systems Control Lett. 62 (2013) 311–318.

[14] C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM: COCV 17 (2011) 243–266.

[15] C. Clason and K. Kunisch, A measure space approach to optimal source placement. Comput. Optim. Appl. 53 (2012) 155–171.

[16] G. Dal Maso An introduction to Γ-convergence. Vol. 8 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA (1993).

[17] V. F. Demyanov and A. M. Rubinov, Approximate methods in optimization problems, Translated from the Russian by Scripta Technica, Inc. Translation edited by George M. Kranc. Modern Analytic and Computational Methods in Science and Mathematics, No. 32, American Elsevier Publishing Co., Inc., New York (1970).

[18] Q. Denoyelle, V. Duval, G. Peyré and E. Soubies, The sliding Frank–Wolfe algorithm and its application to super-resolution microscopy. Inverse Problems 36 (2019) 014001.

[19] N. Dinculeanu and J. J. Uhl, Jr., A unifying Radon-Nikodym theorem for vector measures. J. Multivariate Anal. 3 (1973) 184–203.

[20] J. C. Dunn, Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals. SIAM J. Control Optim. 17 (1979) 187–211.

[21] J. C. Dunn, Convergence rates for conditional gradient sequences generated by implicit step length rules. SIAM J. Control Optim. 18 (1980) 473–487.

[22] J. C. Dunn and S. Harshbarger, Conditional gradient algorithms with open loop step size rules. J. Math. Anal. Appl. 62 (1978) 432–444.

[23] V. Duval, A characterization of the Non-Degenerate Source Condition in Super-Resolution. ArXiv e-prints (2017).

[24] V. Duval and G. Peyré, Exact support recovery for sparse spikes deconvolution. Found. Comput. Math. 15 (2015) 1315–1355.

[25] A. Eftekhari and A. Thompson, Sparse inverse problems over measures: equivalence of the conditional gradient and exchange methods. SIAM J. Optim. 29 (2019) 1329–1349.

[26] V. V. Fedorov, Theory of optimal experiments, Probability and Mathematical Statistics, No. 12. Translated from the Russian and edited by W. J. Studden and E. M. Klimko. Academic Press, New York-London (1972).

[27] V. V. Fedorov and P. Hackl, Model-oriented design of experiments. Vol. 125 of Lecture Notes in Statistics. Springer-Verlag, New York (1997).

[28] A. Flinth, F. De Gournay and P. Weiss, On the linear convergence rates of exchange and continuous methods for total variation minimization. Math. Program. (2020).

[29] M. Frank and P. Wolfe, An algorithm for quadratic programming. Naval Res. Logist. Quart. 3 (1956) 95–110.

[30] G. Friesecke, F. Henneke and K. Kunisch, Frequency-sparse optimal quantum control. Math. Control Related Fields 8 (2018) 155.

[31] A. L. Gibbs and F. E. Su, On choosing and bounding probability metrics. Int. Stat. Rev./Revue Internationale de Statistique 70 (2002) 419–435.

[32] W. Hensgen, A simple proof of Singer’s representation theorem. Proc. Amer. Math. Soc. 124 (1996) 3211–3212.

[33] R. Herzog, G. Stadler and G. Wachsmuth, Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50 (2012) 943–963.

[34] R. Hettich and K. O. Kortanek, Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35 (1993) 380–429.

[35] M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2002) 865–888 (2003).

[36] M. Hintermüller, A. Schiela and W. Wollner, The length of the primal-dual path in Moreau-Yosida-based path-following methods for state constrained optimal control. SIAM J. Optim. 24 (2014) 108–126.

[37] C. A. Holloway, An extension of the Frank and Wolfe method of feasible directions. Math. Program. 6 (1974) 14–27.

[38] J. Kiefer and J. Wolfowitz, Optimum designs in regression problems. Ann. Math. Statist. 30 (1959) 271–294.

[39] K. Kunisch, K. Pieper and B. Vexler, Measure valued directional sparsity for parabolic optimal control problems. SIAM J. Control Optim. 52 (2014) 3078–3108.

[40] K. Kunisch, P. Trautmann and B. Vexler, Optimal control of the undamped linear wave equation with measure valued controls. SIAM J. Control Optim. 54 (2016) 1212–1244.

[41] S. Lacoste-Julien and M. Jaggi, On the global linear convergence of Frank-Wolfe optimization variants, in Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1. NIPS’15. MIT Press, Cambridge, MA, USA (2015) 496–504.

[42] S. Lang, Real analysis. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, second ed. (1983).

[43] S. Lang, Real and functional analysis. Vol. 142 of Graduate Texts in Mathematics. Springer-Verlag, New York, third ed. (1993).

[44] E. Levitin and B. Polyak, Constrained minimization methods. USSR Computational Mathematics and Mathematical Physics 6 (1966) 1–50.

[45] D. Leykekhman, B. Vexler and D. Walter, Numerical analysis of sparse initial data identification for parabolic problems. ESAIM: M2AN 54 (2020) 1139–1180.

[46] P. Merino, I. Neitzel and F. Tröltzsch, On linear-quadratic elliptic control problems of semi-infinite type. Appl. Anal. 90 (2011) 1047–1074.

[47] A. Milzarek, Numerical methods for a class of nonsmooth optimization problems and generalized variational inequalties, dissertation, Technische Universität München, München (2016).

[48] A. Milzarek and M. Ulbrich, A semismooth Newton method with multidimensional filter globalization for l1 -optimization. SIAM J. Optim. 24 (2014) 298–333.

[49] I. Molchanov and S. Zuyev, Steepest descent algorithms in a space of measures. Stat. Comput. 12 (2002) 115–123.

[50] I. Neitzel, K. Pieper, B. Vexler and D. Walter, A sparse control approach to optimal sensor placement in PDE-constrained parameter estimation problems. Num. Math. 143 (2019) 943–984.

[51] K. Pieper, Finite element discretization and efficient numerical solution of elliptic and parabolic sparse control problems. PhD Dissertation, Technische Universität München (2015). http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20150420-1241413-1-4.

[52] K. Pieper, B. Q. Tang, P. Trautmann and D. Walter, Inverse point source location with the helmholtz equation on a bounded domain. Comput. Optim. Appl. 77 (2020) 213–249.

[53] L. Pronzato and A. Pázman, Design of experiments in nonlinear models: asymptotic normality, optimality criteria and small-sample properties. Lecture notes in statistics. Springer, New York, NY (2013).

[54] A. Shapiro, Second-order derivatives of extremal-value functions and optimality conditions for semi-infinite programs. Math. Oper. Res. 10 (1985) 207–219.

[55] G. Stadler, Elliptic optimal control problems with L1-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44 (2009) 159–181.

[56] D. Uciński, Optimal measurement methods for distributed parameter system identification. Systems and Control Series, CRC Press, Boca Raton, FL (2005).

[57] M. Ulbrich, Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13 (2002) 805–842 (2003).

[58] D. Walter, On sparse sensor placement for parameter identification problems with partial differential equations. Ph.D. thesis, Technische Universität München, (2019). http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20190604-1456274-1-8.

[59] P. Wolfe, Convergence theory in nonlinear programming. North-Holland, Amsterdam (1970).

[60] C.-F. Wu, Some algorithmic aspects of the theory of optimal designs. Ann. Stat. (1978) 1286–1301.

[61] C.-F. Wu, Some iterative procedures for generating nonsingular optimal designs. Commun. Stat. Theory Methods 7 (1978) 1399–1412.

[62] H. P. Wynn, The sequential generation of D-optimum experimental designs. Ann. Math. Statist. 41 (1970) 1655–1664.

[63] Y. Yu, D-optimal designs via a cocktail algorithm. Stat. Comput. 21 (2011) 475–481.

Cité par Sources :

KP acknowledges funding by the US Air Force Office of Scientific Research grant FA9550-15-1-0001 and the Laboratory Directed Research and Development Program at Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). DW acknowledges support by the DFG through the International Research Training Group IGDK 1754 “Optimization and Numerical Analysis for Partial Differential Equations with Nonsmooth Structures”. Furthermore, support from the TopMath Graduate Center of TUM Graduate School at Technische Universität München, Germany and from the TopMath Program at the Elite Network of Bavaria is gratefully acknowledged.