An application of the continuous Steiner symmetrization to Blaschke-Santaló diagrams
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 36

In this paper we consider the so-called procedure of Continuous Steiner Symmetrization, introduced by Brock in [F. Brock, Math. Nachr. 172 (1995) 25–48 and F. Brock, Proc. Indian Acad. Sci. 110 (2000) 157–204]. It transforms every open set Ω ⊂⊂ ℝ$$ into the ball keeping the volume fixed and letting the first eigenvalue and the torsional rigidity respectively decrease and increase. While this does not provide, in general, a γ-continuous map t ↦ Ω$$, it can be slightly modified so to obtain the γ-continuity for a γ-dense class of domains Ω, namely, the class of polyhedral sets in ℝ$$. This allows to obtain a sharp characterization of the Blaschke-Santaló diagram of torsion and eigenvalue.

DOI : 10.1051/cocv/2021038
Classification : 49Q10, 49J45, 49R05, 35P15, 35J25
Keywords: Blaschke-Santaló diagrams, continuous Steiner symmetrization, torsional rigidity, principal eigenvalue
@article{COCV_2021__27_1_A38_0,
     author = {Buttazzo, Giuseppe and Pratelli, Aldo},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {An application of the continuous {Steiner} symmetrization to {Blaschke-Santal\'o} diagrams},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021038},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021038/}
}
TY  - JOUR
AU  - Buttazzo, Giuseppe
AU  - Pratelli, Aldo
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - An application of the continuous Steiner symmetrization to Blaschke-Santaló diagrams
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021038/
DO  - 10.1051/cocv/2021038
LA  - en
ID  - COCV_2021__27_1_A38_0
ER  - 
%0 Journal Article
%A Buttazzo, Giuseppe
%A Pratelli, Aldo
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T An application of the continuous Steiner symmetrization to Blaschke-Santaló diagrams
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021038/
%R 10.1051/cocv/2021038
%G en
%F COCV_2021__27_1_A38_0
Buttazzo, Giuseppe; Pratelli, Aldo. An application of the continuous Steiner symmetrization to Blaschke-Santaló diagrams. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 36. doi: 10.1051/cocv/2021038

[1] A. Alvino, P.-L. Lions and G. Trombetti, Comparison results for elliptic and parabolic equations via symmetrization: a new approach. Differ. Integral Equations 4 (1991) 25–50.

[2] M. Van Den Berg and G. Buttazzo, On capacity and torsional rigidity. Bull. Lond. Math. Soc. 53 (2021) 347–359.

[3] M. Van Den Berg, G. Buttazzo and A. Pratelli, On the relations between principal eigenvalue and torsional rigidity. To appear in: Commun. Contemp. Math. (2020). | DOI

[4] M. Van Den Berg, G. Buttazzo and B. Velichkov, Optimization problems involving the first Dirichlet eigenvalue and the torsional rigidity, in New Trends in Shape Optimization. Birkhäuser Verlag, Basel (2015) 19–41.

[5] M. Van Den Berg, V. Ferone, C. Nitsch and C. Trombetti, On Pólya’s inequality for torsional rigidity and first Dirichlet eigenvalue. Integral Equations Oper. Theory 86 (2016) 579–600.

[6] H. J. Brascamp, H. Lieb and J. M. Luttinger, general rearrangement inequality for multiple integrals. J. Funct. Anal. 17 (1974) 227–237.

[7] L. Brasco, On torsional rigidity and principal frequencies: an invitation to the Kohler-Jobin rearrangement technique. COCV 20 (2014) 315–338.

[8] L. Briani, G. Buttazzo and F. Prinari, Some inequalities involving perimeter and torsional rigidity. To appear in: Appl. Math. Optim. (2020). | DOI

[9] F. Brock, Continuous Steiner-symmetrization. Math. Nachr. 172 (1995) 25–48.

[10] F. Brock, Continuous rearrangement and symmetry of solutions of elliptic problems. Proc. Indian Acad. Sci. 110 (2000) 157–204.

[11] D. Bucur, G. Buttazzo and I. Figueiredo, On the attainable eigenvalues of the Laplace operator. SIAM J. Math. Anal. 30 (1999) 527–536.

[12] D. Bucur and G. Buttazzo, Variational methods in shape optimization problems. Prog. Nonlinear Differ. Equations 65 (2005).

[13] D. Bucur and A. Henrot, Stability for the Dirichlet problem under continuous steiner symmetrization. Potential Anal. 13 (2000) 127–145.

[14] I. Ftouhi and J. Lamboley, Blaschke-Santaló diagram for volume, perimeter, and first Dirichlet eigenvalue. Preprint https://hal.archives-ouvertes.fr..

[15] B. Kawohl, Rearrangements and convexity of level sets in PDE. Springer Lecture notes Math. 1150 (1985) 7–44.

[16] I. Lucardesi and D. Zucco, On Blaschke-Santaló diagrams for the torsional rigidity and the first Dirichlet eigenvalue. Preprint . | arXiv

Cité par Sources :

Dedicated to Enrique Zuazua for his 60th birthday.