A singular elliptic equation and a related functional
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 39

We study a class of Dirichlet boundary value problems whose prototype is

$$

where 0 < p < 1 and f belongs to a suitable Lebesgue space. The main features of this problem are the presence of a singular term |u|$$u and a datum f which possibly changes its sign. We introduce a notion of solution in this singular setting and we prove an existence result for such a solution. The motivation of our notion of solution to problem above is due to a minimization problem for a non–differentiable functional on $$ whose formal Euler–Lagrange equation is an equation of that type. For nonnegative solutions a uniqueness result is obtained.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021037
Classification : 35B25, 35B27, 35J25, 35J67
Keywords: Semilinear equations, singularity at $$ = 0, existence, uniqueness
@article{COCV_2021__27_1_A41_0,
     author = {Ferone, A. and Mercaldo, A. and Segura De Le\'on, S.},
     title = {A singular elliptic equation and a related functional},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021037},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021037/}
}
TY  - JOUR
AU  - Ferone, A.
AU  - Mercaldo, A.
AU  - Segura De León, S.
TI  - A singular elliptic equation and a related functional
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021037/
DO  - 10.1051/cocv/2021037
LA  - en
ID  - COCV_2021__27_1_A41_0
ER  - 
%0 Journal Article
%A Ferone, A.
%A Mercaldo, A.
%A Segura De León, S.
%T A singular elliptic equation and a related functional
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021037/
%R 10.1051/cocv/2021037
%G en
%F COCV_2021__27_1_A41_0
Ferone, A.; Mercaldo, A.; Segura De León, S. A singular elliptic equation and a related functional. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 39. doi: 10.1051/cocv/2021037

[1] D. Arcoya and L. Boccardo, Multiplicity of solutions for a Dirichlet problem with a singular and a supercritical nonlinearities. Differ. Integr. Equ. 26 (2013) 119–128.

[2] D. Arcoya and L. Moreno-Mérida, Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity. Nonlinear Anal. 95 (2014) 281–291.

[3] L. Boccardo, A Dirichlet problem with singular and supercritical nonlinearities. Nonlinear Anal. 75 (2012) 4436–4440.

[4] L. Boccardo and J. Casado-Díaz, Some properties of solutions of some semilinear elliptic singular problems and applications to the G-convergence. Asymptot. Anal. 86 (2014) 1–15.

[5] L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities. Calc. Var. Partial Differ. Equ. 37 (2010) 363–380.

[6] J. Casado-Díaz and F. Murat, Semilinear problems with right-hand sides singular at u = 0 which change sig. To appear in Ann. Inst. Henri Poincaré, Anal. Non Linéaire. doi:. | DOI

[7] A. Canino and M. Degiovanni, A variational approach to a class of singular semilinear elliptic equations. J. Convex Anal. 11 (2004) 147–162.

[8] A. Canino, M. Grandinetti and B. Sciunzi, Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities. J. Differ. Equ. 255 (2013) 4437–4447.

[9] A. Canino, F. Esposito and B. Sciunzi, On the Höpf boundary lemma for singular semilinear elliptic equations. J. Differ. Equ. 266 (2019) 5488–5499.

[10] B. Brandolini, F. Chiacchio and C. Trombetti, Symmetrization for singular semilinear elliptic equations. Ann. Mat. Pura Appl. 193 (2014) 389–404.

[11] M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity. Commun. Partial Differ. Equ. 2 (1977) 193–222.

[12] G. Croce, An elliptic problem with two singularities. Asymptot. Anal. 78 (2012) 1–10.

[13] G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999) 741–808.

[14] L. C. Evans, Partial differential equations. Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (1998).

[15] D. Giachetti, P. J. Martínez-Aparicio and F. Murat, On the definition of the solution to a semilinear elliptic problem with a strong singularity at u = 0. Nonlinear Anal. 177 (2018) 491–523.

[16] D. Giachetti, P. J. Martínez-Aparicio and F. Murat, Definition, existence, stability and uniqueness of the solution to a semilinear elliptic problem with a strong singularity at u = 0. Ann. Sc. Norm. Super. Pisa Cl. Sci. 18 (2018) 1395–1442.

[17] D. Giachetti, P. J. Martínez-Aparicio and F. Murat, A semilinear elliptic equation with a mild singularity at u = 0: existence and homogenization. J. Math. Pures Appl. 107 (2017) 41–77.

[18] D. Giachetti, F. Petitta and S. Segura De León, Elliptic equations having a singular quadratic gradient term and a changing sign datum. Comm. Pure Appl. Anal. 11 (2012) 1875–1895.

[19] E. Giusti, Direct methods in the calculus of variations. World Scientific, Singapore (2003).

[20] P.-L. Lions and F. Murat, Sur les solutions renormalisées d’équations elliptiques non linéaires. Unpublished paper.

[21] F. Oliva and F. Petitta, On singular elliptic equations with measure sources. ESAIM: COCV 22 (2016) 289–308.

[22] L. Orsina and F. Petitta, A Lazer-McKenna type problem with measures. Differ. Integr. Equ. 29 (2016) 19–36.

Cité par Sources :

The third author is partially supported by the Spanish Ministerio de Ciencia, Innovación y Universidades and FEDER, under project PGC2018–094775–B–I00. The first and second authors are partially supported by INdAM - GNAMPA