Mean-field optimal control for biological pattern formation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 40

We propose a mean-field optimal control problem for the parameter identification of a given pattern. The cost functional is based on the Wasserstein distance between the probability measures of the modeled and the desired patterns. The first-order optimality conditions corresponding to the optimal control problem are derived using a Lagrangian approach on the mean-field level. Based on these conditions we propose a gradient descent method to identify relevant parameters such as angle of rotation and force scaling which may be spatially inhomogeneous. We discretize the first-order optimality conditions in order to employ the algorithm on the particle level. Moreover, we prove a rate for the convergence of the controls as the number of particles used for the discretization tends to infinity. Numerical results for the spatially homogeneous case demonstrate the feasibility of the approach.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021034
Classification : 49K15, 49K20, 70F10, 82C22, 92C15
Keywords: Optimal control with ODE/PDE constraints, interacting particle systems, mean-field limits, dynamical systems, pattern formation
@article{COCV_2021__27_1_A42_0,
     author = {Burger, Martin and Kreusser, Lisa Maria and Totzeck, Claudia},
     title = {Mean-field optimal control for biological pattern formation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021034},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021034/}
}
TY  - JOUR
AU  - Burger, Martin
AU  - Kreusser, Lisa Maria
AU  - Totzeck, Claudia
TI  - Mean-field optimal control for biological pattern formation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021034/
DO  - 10.1051/cocv/2021034
LA  - en
ID  - COCV_2021__27_1_A42_0
ER  - 
%0 Journal Article
%A Burger, Martin
%A Kreusser, Lisa Maria
%A Totzeck, Claudia
%T Mean-field optimal control for biological pattern formation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021034/
%R 10.1051/cocv/2021034
%G en
%F COCV_2021__27_1_A42_0
Burger, Martin; Kreusser, Lisa Maria; Totzeck, Claudia. Mean-field optimal control for biological pattern formation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 40. doi: 10.1051/cocv/2021034

[1] G. Albi, Y.-P. Choi, M. Fornasier and D. Kalise, Mean field control hierarchy. Appl. Math. Optim. 76 (2017) 93–135.

[2] L. Ambrosio, N. Gigli and G. Savare, Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics. ETH Zürich. Birkhäuser Basel (2005).

[3] M. Bongini, M. Fornasier, F. Rossi and F. Solombrino, Mean-field pontryagin maximum principle. Opt. Theo. Appl. 175 (2017) 1–38.

[4] M. Burger, L. Caffarelli, P. A. Markowich and M.-T. Wolfram, On a boltzmann-type price formation model. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 469 (2013) 20130126.

[5] M. Burger, B. Düring, L. M. Kreusser, P. A. Markowich and C.-B. Schönlieb, Pattern formation of a nonlocal, anisotropic interaction model. Math. Models Methods Appl. Sci. 28 (2018) 409–451.

[6] M. Burger, M. Di Francesco, P. A. Markowich and M.-T. Wolfram, Mean field games with nonlinear mobilities in pedestrian dynamics. Disc. Cont. Dyn. Syst. B 19 (2014) 1311–1333.

[7] M. Burger, R. Pinnau, C. Totzeck and O. Tse, Mean-field optimal control and optimality conditions in the space of probability measures. SIAM: J. Control Optim. 59 (2021) 977–1006.

[8] M. Burger, R. Pinnau, C. Totzeck, O. Tse and A. Roth, Instantaneous control of interacting particle systems in the mean-field limit. J. Computat. Phys. 405 (2020) 109181.

[9] J. A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse, An analytical framework for a consensus-based global optimization method. Math. Mod. Meth. Appl. Sci. 28 (2018).

[10] J. A. Carrillo, B. Düring, L. M. Kreusser and C.-B. Schönlieb, Equilibria of an anisotropic nonlocal interaction equation: analysis and numerics. Preprint (2019). | arXiv

[11] J. A. Carrillo, B. Düring, L. M. Kreusser and C.-B. Schönlieb, Stability analysis of line patterns of an anisotropic interaction model. SIAM J. Appl. Dyn. Syst. 18 (2019) 1798–1845.

[12] P. Degond, M. Herty and J. G. Liu, Meanfield games and model predictive control. Commun. Math. Sci. 15 (2017) 1403–1422.

[13] M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett. 96 (2006) 104302.

[14] B. Düring, C. Gottschlich, S. Huckemann, L. M. Kreusser and C.-B. Schönlieb, An anisotropic interaction model for simulating fingerprints. J. Math. Biol. 78 (2019) 2171–2206.

[15] B. Düring, P. Markowich, J.-F. Pietschmann and M.-T. Wolfram, Boltzmann and Fokker–Planck equations modelling opinion formation in the presence of strong leaders. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 465 (2009) 3687–3708.

[16] R. Flamary and N. Courty, Pot: Python optimal transportlibrary (2017). https://pythonot.github.io.

[17] G. Foderaro, S. Ferrari and T. A. Wettergren, Distributed optimal control for multi-agent trajectory optimization. Automatica 50 (2014) 149–154.

[18] M. Fornasier and F. Solombrino, Mean-field optimal control. ESAIM: Cont. Optim. Calcul. Variat. 20 (2014) 1123–1152.

[19] A. Gerisch and M. A. J. Chaplain, Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J. Theoret. Biol. 250 (2008) 684–704.

[20] F. Golse, Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, chapter On the Dynamics of Large Particle Systems in the Mean Field Limit. Springer International Publishing, Cham (2016), 1–144.

[21] M. Herty, C. Kirchner and A. Klar, Instantaneous control for traffic flow. Math. Methods Appl. Sci. 30 (2007) 153–169.

[22] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints. Springer (2009).

[23] L. M. Kreusser and M.-T. Wolfram, On anisotropic diffusion equations for label propagation. Preprint (2020). | arXiv

[24] M. Kücken and C. Champod, Merkel cells and the individuality of friction ridge skin. J. Theoret. Biol. 317 (2013) 229–237.

[25] B. Piccoli, F. Rossi and E. Trélat Control to flocking of the kinetic cucker–smale model. SIAM J. Math. Anal. 47 (2015) 4685–4719.

[26] R. Pinnau, C. Totzeck, O. Tse and S. Martin, A consensus-based model for global optimization and its mean-field limit. Math. Mod. Meth. Appl. Sci. 27 (2017).

[27] J. P. Taylor-King, B. Franz, C. A. Yates and R. Erban, Mathematical modelling of turning delays in swarm robotics. IMA J. Appl. Math. 80 (2015) 1454–1474.

[28] C. Totzeck, An anisotropic interaction model with collision avoidance. Kin. Rel. Mod. 13 (2019) 1219–1242.

[29] C. Totzeck and M.-T. Wolfram, Consensus-based global optimization with personal best. Math. Bio. Eng. 17 (2020) 6026–6044.

Cité par Sources :