Recently Fraser and Schoen showed that the solution of a certain extremal Steklov eigenvalue problem on a compact surface with boundary can be used to generate a free boundary minimal surface, i.e., a surface contained in the ball that has (i) zero mean curvature and (ii) meets the boundary of the ball orthogonally (doi:10.1007/s00222-015-0604-x). In this paper, we develop numerical methods that use this connection to realize free boundary minimal surfaces. Namely, on a compact surface, Σ, with genus γ and b boundary components, we maximize σ$$(Σ, g) L(∂Σ, g) over a class of smooth metrics, g, where σ$$(Σ, g) is the jth nonzero Steklov eigenvalue and L(∂Σ, g) is the length of ∂Σ. Our numerical method involves (i) using conformal uniformization of multiply connected domains to avoid explicit parameterization for the class of metrics, (ii) accurately solving a boundary-weighted Steklov eigenvalue problem in multi-connected domains, and (iii) developing gradient-based optimization methods for this non-smooth eigenvalue optimization problem. For genus γ = 0 and b = 2, …, 9, 12, 15, 20 boundary components, we numerically solve the extremal Steklov problem for the first eigenvalue. The corresponding eigenfunctions generate a free boundary minimal surface, which we display in striking images. For higher eigenvalues, numerical evidence suggests that the maximizers are degenerate, but we compute local maximizers for the second and third eigenvalues with b = 2 boundary components and for the third and fifth eigenvalues with b = 3 boundary components.
Accepté le :
Première publication :
Publié le :
Keywords: Steklov eigenvalue, eigenvalue optimization, free boundary minimal surface
@article{COCV_2021__27_1_A36_0,
author = {Oudet, \'Edouard and Kao, Chiu-Yen and Osting, Braxton},
title = {Computation of free boundary minimal surfaces \protect\emph{via} extremal {Steklov} eigenvalue problems},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2021},
publisher = {EDP-Sciences},
volume = {27},
doi = {10.1051/cocv/2021033},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2021033/}
}
TY - JOUR AU - Oudet, Édouard AU - Kao, Chiu-Yen AU - Osting, Braxton TI - Computation of free boundary minimal surfaces via extremal Steklov eigenvalue problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2021 VL - 27 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2021033/ DO - 10.1051/cocv/2021033 LA - en ID - COCV_2021__27_1_A36_0 ER -
%0 Journal Article %A Oudet, Édouard %A Kao, Chiu-Yen %A Osting, Braxton %T Computation of free boundary minimal surfaces via extremal Steklov eigenvalue problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2021 %V 27 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2021033/ %R 10.1051/cocv/2021033 %G en %F COCV_2021__27_1_A36_0
Oudet, Édouard; Kao, Chiu-Yen; Osting, Braxton. Computation of free boundary minimal surfaces via extremal Steklov eigenvalue problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 34. doi: 10.1051/cocv/2021033
[1] , and , Computational methods for extremal Steklov problems. SIAM J. Cont. Optim. 55 (2017) 1226–1240
[2] and , Maximal convex combinations of sequential Steklov eigenvalues. J. Scientific Computing 79 (2019) 2006–2026
[3] and , Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians. J. Optim. Theory Appl. 154 (2012) 235–257
[4] and , Numerical minimization of Dirichlet Laplacian eigenvalues of four-dimensional geometries. SIAM J. Sci. Comput. 39 (2017) B508–B521
[5] and , Qualitative and numerical analysis of a spectral problem with perimeter constraint. SIAM J. Cont. Optim. 54 (2016) 317–340
[6] , and , Optimal shapes maximizing the Steklov eigenvalues. SIAM J. Math. Anal. 49 (2017) 1645–1680
[7] , Min-energy configurations of electrons on a sphere (2020). http://mathpages.com/home/kmath005/kmath005.htm
[8] , and , : An integrated package for nonlinear optimization, in Large-Scale Nonlinear Optimization. Springer (2006) 35–59
[9] , and , An extremal eigenvalue problem for the Wentzell–Laplace operator. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis 33 (2016) 409–445
[10] , Sums of reciprocal Stekloff eigenvalues. Math. Nachr. 268 (2004) 44–49
[11] , , et al., Domain deformations and eigenvalues of the Dirichlet Laplacian in a Riemannian manifold. Ill. J. Math. 51 (2007) 645–666
[12] , and , Extremal problems for Steklov eigenvalues on annuli. Cal. Var. Part. Diff. Equ. 54 (2014) 1043–1059
[13] , über die verteilung der wurzeln bei gewissen algebraischen gleichungen mit ganzzahligen koeffizienten. Math. Z. 17 (1923) 228–249
[14] and , The first Steklov eigenvalue, conformal geometry and minimal surfaces. Adv. Math. 226 (2011) 4011–4030
[15] and , Minimal surfaces and eigenvalue problems. Contemp. Math. (2013) 105–121. | DOI
[16] and , Sharp eigenvalue bounds and minimal surfaces in the ball. Invent Math. 203 (2015) 823–890
[17] and , Some results on higher eigenvalue optimization. Cal. Var. Part. Diff. Equ. 59 (2020) 1–22
[18] and , Quasiconformal Teichmüller Theory. American Mathematical Society (1999)
[19] and , Large Steklov eigenvalues via homogenisation on manifolds. Preprint, (2020). | arXiv
[20] , and , Steklov eigenvalues and quasiconformal maps of simply connected planar domains. Arch. Rat. Mech. Anal. 219 (2016) 903–936
[21] and , Upper bounds for Steklov eigenvalues on surfaces. Electron. Res. Announ. Math. Sci. 19 (2012) 77–85
[22] and , Spectral geometry of the Steklov problem. J. Spectr. Theory 7 (2017) 321–359
[23] , Applied and Computational Complex Analysis. John Wiley & Sons (1986)
[24] , , and , Conformal Geometry. Springer International Publishing (2018)
[25] , and , Maximization of Laplace-Beltrami eigenvalues on closed Riemannian surfaces. ESAIM: COCV 23 (2017) 685–720
[26] , Bounds between Laplace and Steklov eigenvalues on nonnegatively curved manifolds. Electron. Res. Announ. Math. Sci. 24 (2017) 100–109
[27] and , Viewing the Steklov eigenvalues of the Laplace operator as critical Neumann eigenvalues, in Trends in Mathematics. Springer International Publishing (2015) 171–178
[28] , Free boundary minimal surfaces in the unit ball: recent advances and open questions. Preprint, (2019). | arXiv
[29] , Le spectre de Steklov de la boule trou’ee. J. des étudiants de 1er cycle en mathématiques de l’Université Laval (2014)
[30] and , Free boundary minimal surfaces of any topological type in Euclidean balls via shape optimization. Preprint, (2020). | arXiv
[31] , Complex Analysis and Conformal Mapping. University of Minnesota (2017)
[32] , Optimization of spectral functions of Dirichlet–Laplacian eigenvalues. J. Computat. Phys 229 (2010) 8578–8590
[33] and , Minimal convex combinations of sequential Laplace–Dirichlet eigenvalues. SIAM J. Sci. Comput. 35 (2013) B731–B750
[34] and , Minimal convex combinations of three sequential Laplace-Dirichlet eigenvalues. Appl. Math. Optim. 69 (2014) 123–139
[35] , Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM: COCV 10 (2004) 315–330
[36] , Personal website (2020). https://www-ljk.imag.fr/membres/Edouard.Oudet/research/SteklovMin/index˙n.php
[37] , Series solution of Laplace problems. ANZIAM J 60 (2018) 1–26
[38] , Bloomington’s virtual minimal surface museum (2020). https://minimal.sitehost.iu.edu/archive/Spheres/Noids/Jorge-Meeks/web/index.html
[39] , Inequalities for a classical eigenvalue problem. Indiana Univ. Math. J. 3 (1954) 745–753
[40] , , , and , Generalized Koebe’s method for conformal mapping multiply connected domains, in 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (2009) 89–100. | DOI
Cité par Sources :





