Abstract nonlinear sensitivity and turnpike analysis and an application to semilinear parabolic PDEs
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 56

We analyze the sensitivity of the extremal equations that arise from the first order necessary optimality conditions of nonlinear optimal control problems with respect to perturbations of the dynamics and of the initial data. To this end, we present an abstract implicit function approach with scaled spaces. We will apply this abstract approach to problems governed by semilinear PDEs. In that context, we prove an exponential turnpike result and show that perturbations of the extremal equation’s dynamics, e.g., discretization errors decay exponentially in time. The latter can be used for very efficient discretization schemes in a Model Predictive Controller, where only a part of the solution needs to be computed accurately. We showcase the theoretical results by means of two examples with a nonlinear heat equation on a two-dimensional domain.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021030
Classification : 49K20, 49K40, 93D20, 35K55, 35Q93
Keywords: Nonlinear optimal control, sensitivity analysis, Turnpike property, model predictive control
@article{COCV_2021__27_1_A58_0,
     author = {Gr\"une, Lars and Schaller, Manuel and Schiela, Anton},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {Abstract nonlinear sensitivity and turnpike analysis and an application to semilinear parabolic {PDEs}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021030},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021030/}
}
TY  - JOUR
AU  - Grüne, Lars
AU  - Schaller, Manuel
AU  - Schiela, Anton
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - Abstract nonlinear sensitivity and turnpike analysis and an application to semilinear parabolic PDEs
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021030/
DO  - 10.1051/cocv/2021030
LA  - en
ID  - COCV_2021__27_1_A58_0
ER  - 
%0 Journal Article
%A Grüne, Lars
%A Schaller, Manuel
%A Schiela, Anton
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T Abstract nonlinear sensitivity and turnpike analysis and an application to semilinear parabolic PDEs
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021030/
%R 10.1051/cocv/2021030
%G en
%F COCV_2021__27_1_A58_0
Grüne, Lars; Schaller, Manuel; Schiela, Anton. Abstract nonlinear sensitivity and turnpike analysis and an application to semilinear parabolic PDEs. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 56. doi: 10.1051/cocv/2021030

[1] R. A. Adams, Sobolev Spaces. Academic Press, Amsterdam, Boston (1975).

[2] H. Amann, Dual semigroups and second order linear elliptic boundary value problems. Israel J. Math 45 (1983) 225–254.

[3] H. Amann, Maximal regularity for nonautonomous evolution equations. Adv. Nonlinear Stud. 4 (2004) 417–430.

[4] J. Appell and P. P. Zabrejko, Nonlinear Superposition Operators. Cambridge Tracts in Mathematics. Cambridge University Press (1990).

[5] A. Bensoussan, G. Da Prato, M. C. Delfour and S. Mitter, Representation and control of infinite dimensional systems. Springer Science & Business Media (2007).

[6] L. Bonifacius and I. Neitzel, Second order optimality conditions for optimal control of quasilinear parabolic equations. Math. Control Related Fields 8 (2018) 1–34.

[7] T. Breiten and L. Pfeiffer, On the turnpike property and the receding-horizon method for linear-quadratic optimal control problems. SIAM J. Control Optim. 58 (2020) 1077–1102.

[8] J. A. E. Bryson and Y.-C. Ho, Applied Optimal Control. Routledge (1975) . | DOI

[9] E. Casas, Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31 (1993) 993–1006.

[10] E. Casas, L. A. Fernández and J. Yong, Optimal control of quasilinear parabolic equations. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 545–565.

[11] T. Damm, L. Grüne, M. Stieler and K. Worthmann, An exponential turnpike theorem for dissipative discrete time optimal control problems. SIAM J. Control Optim. 52 (2014) 1935–1957.

[12] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Springer Verlag, New York (2000).

[13] C. Esteve, B. Geshkovski, D. Pighin and E. Zuazua, Large-time asymptotics in deep learning. Preprint (2020). | arXiv

[14] C. Esteve, H. Kouhkouh, D. Pighin and E. Zuazua, The turnpike property and the long-time behavior of the Hamilton-Jacobi equation. Preprint (2020). | arXiv

[15] T. Faulwasser, K. Flaßkamp, S. Ober-Blöbaum and K. Worthmann, A dissipativity characterization of velocity turnpikes in optimal control problems for mechanical systems. Preprint (2020). | arXiv

[16] T. Faulwasser, L. Grüne, J.-P. Humaloja and M. Schaller, The interval turnpike property for adjoints. (2020). | arXiv

[17] T. Faulwasser, M. Korda, C. N. Jones and D. Bonvin, On turnpike and dissipativity properties of continuous-time optimal control problems. Automatica J. IFAC 81 (2017) 297–304.

[18] H. Goldberg, W. Kampowsky and F. Tröltzsch, On Nemytskij operators in Lp-spaces of abstract functions. Math. Nachr. 155 (1992) 127–140.

[19] S. Götschel, A. Schiela and M. Weiser, Kaskade 7–A flexible finite element toolbox. Comput. Math. Appl. (2020).

[20] L. Grüne, M. Schaller and A. Schiela, Efficient MPC for parabolic PDEs with goal oriented error estimation. Preprint (2020). | arXiv

[21] L. Grüne, Approximation properties of receding horizon optimal control. Jahresber. Dtsch. Math.-Ver. 118 (2016) 3–37.

[22] L. Grüne and R. Guglielmi, On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Math. Control Relat. Fields (2020).

[23] L. Grüne and M. A. Müller, On the relation between strict dissipativity and turnpike properties. Syst. Control Lett. 90 (2016) 45–53.

[24] L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory and Algorithms. Springer Verlag, London (2016).

[25] L. Grüne, S. Pirkelmann and M. Stieler, Strict dissipativity implies turnpike behavior for time-varying discrete time optimal control problems, In Control Systems and Mathematical Methods in Economics: Essays in Honor of Vladimir M. Veliov. Vol. 687 of Lecture Notes in Econom. and Math. Systems. Springer, Cham (2018) 195–218.

[26] L. Grüne, M. Schaller and A. Schiela, Sensitivity analysis of optimal control for a class of parabolic PDEs motivated by model predictive control. SIAM J. Control Optim. 57 (2019) 2753–2774.

[27] L. Grüne, M. Schaller and A. Schiela, Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations. J. Differ. Equ. 268 (2020) 7311–7341.

[28] M. Gugat and F. Hante, On the turnpike phenomenon for optimal boundary control problems with hyperbolic systems. SIAM J. Control Optim. 57 (2019) 264–289.

[29] M. Gugat, E. Trélat and E. Zuazua, Optimal Neumann control for the 1D wave equation: Finite horizon, infinite horizon, boundary tracking terms and the turnpike property. Syst. Control Lett. 90 (2016) 61–70.

[30] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE constraints. Vol. 23 of Mathematical Modelling: Theory and Applications. Springer, New York (2009).

[31] R. Kress, Vol. 17 of Linear integral equations. Springer (2014).

[32] O. A. Ladyzhenskaia, V. A. Solonnikov and N. N. Ural’Ceva, Vol. 23 of Linear and quasi-linear equations of parabolic type. American Mathematical Soc. (1968).

[33] G. Lance, E. Trélat and E. Zuazua, Turnpike in optimal shape design. IFAC-PapersOnLine 52 (2019) 496–501.

[34] H. Meinlschmidt, Analysis and Optimal Control of Quasilinear Parabolic Evolution Equations in Divergence Form on Rough Domains, PhD thesis, Universität Darmstadt (2017).

[35] S. Na, S. Shin, M. Anitescu and V. M. Zavala, Overlapping schwarz decomposition for nonlinear optimal control. Preprint (2020). | arXiv

[36] N. S. Papageorgiou, On the optimal control of strongly nonlinear evolution equations. J. Math. Anal. Appl. 164 (1992) 83–103.

[37] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag, New York (1983).

[38] D. Pighin, The turnpike property in semilinear control. Preprint (2020). | arXiv

[39] D. Pighin and N. Sakamoto, The turnpike with lack of observability. Preprint (2020). | arXiv

[40] A. Porretta and E. Zuazua, Long time versus steady state optimal control. SIAM J. Control Optim. 51 (2013) 4242–4273.

[41] A. Porretta and E. Zuazua, Remarks on long time versus steady state optimal control, In Mathematical paradigms of climate science. Springer (2016) 67–89.

[42] J. B. Rawlings, D. Q. Mayne and M. Diehl, Vol. 2 of Model Predictive Control: Theory, Computation, and Design. Nob Hill Publishing Madison, WI (2017).

[43] J. P. Raymond and H. Zidani, Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39 (1999) 143–177.

[44] F. Rothe, Uniform bounds from bounded L$$-functionals in reaction-diffusion equations. J. Differ. Equ. 45 (1982) 207–233.

[45] N. Sakamoto, D. Pighin and E. Zuazua, The turnpike property in nonlinear optimal control – a geometric approach, In 2019 IEEE 58th Conference on Decision and Control (CDC) (2019) 2422–2427.

[46] A. Schiela, A concise proof for existence and uniqueness of solutions of linear parabolic PDEs in the context of optimal control. Systems Control Lett. 62 (2013) 895–901.

[47] S. Shin and V. M. Zavala, Diffusing-horizon model predictive control. Preprint (2020). | arXiv

[48] E. Trélat and C. Zhang, Integral and measure-turnpike properties for infinite-dimensional optimal control systems. Math. Control Signals Syst. 30 (2018) 3.

[49] E. Trélat, C. Zhang and E. Zuazua, Optimal shape design for 2d heat equations in large time. J. Appl. Funct. Anal. 3 (2018) 255–269.

[50] E. Trélat, C. Zhang and E. Zuazua, Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces. SIAM J. Control Optim. 56 (2018) 1222–1252.

[51] E. Trélat and E. Zuazua, The turnpike property in finite-dimensional nonlinear optimal control. J. Differ. Equ. 258 (2015) 81–114.

[52] F. Tröltzsch, Vol. 112 of Optimal control of partial differential equations: theory, methods, and applications. American Mathematical Soc. (2010).

[53] M. Warma and S. Zamorano, Exponential turnpike property for fractional parabolic equations with non-zero exterior data. ESAIM: COCV 27 (2021) 1.

[54] D. Werner, Funktionalanalysis. Springer Verlag, Berlin, Heidelberg (2011).

[55] J. C. Willems, Dissipative dynamical systems part i: General theory. Arch. Ration. Mech. Anal. 45 (1972) 321–351.

[56] J. C. Willems, Dissipative dynamical systems. Part II: Linear systems with quadratic supply rates. Arch. Ration. Mech. Anal. 45 (1972) 352–393.

[57] S. Zamorano, Turnpike property for two-dimensional Navier–Stokes equations. J. Math. Fluid Mech. 20 (2018) 869–888.

Cité par Sources :

This work was supported by the DFG Grants GR 1569/17-1 and SCHI 1379/5-1.