We prove uniform convergence in Lipschitz domains of approximations to p-harmonic functions obtained using the natural p-means introduced by Ishiwata, Magnanini, and Wadade [Calc. Var. Partial Differ. Equ. 56 (2017) 97]. We also consider convergence of natural means in the Heisenberg group in the case of smooth domains.
Accepté le :
Première publication :
Publié le :
Keywords: $$-Laplacian, natural $$-means, Dirichlet problem, Discrete approximations, asymptotic mean value properties, convergence, generalized viscosity solutions, Heisenberg group
@article{COCV_2021__27_1_A35_0,
author = {Manfredi, Juan J. and Stroffolini, Bianca},
editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
title = {Convergence of the natural \protect\emph{p}-means for the {\protect\emph{p}-Laplacian}},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2021},
publisher = {EDP-Sciences},
volume = {27},
doi = {10.1051/cocv/2021026},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2021026/}
}
TY - JOUR AU - Manfredi, Juan J. AU - Stroffolini, Bianca ED - Buttazzo, G. ED - Casas, E. ED - de Teresa, L. ED - Glowinski, R. ED - Leugering, G. ED - Trélat, E. ED - Zhang, X. TI - Convergence of the natural p-means for the p-Laplacian JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2021 VL - 27 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2021026/ DO - 10.1051/cocv/2021026 LA - en ID - COCV_2021__27_1_A35_0 ER -
%0 Journal Article %A Manfredi, Juan J. %A Stroffolini, Bianca %E Buttazzo, G. %E Casas, E. %E de Teresa, L. %E Glowinski, R. %E Leugering, G. %E Trélat, E. %E Zhang, X. %T Convergence of the natural p-means for the p-Laplacian %J ESAIM: Control, Optimisation and Calculus of Variations %D 2021 %V 27 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2021026/ %R 10.1051/cocv/2021026 %G en %F COCV_2021__27_1_A35_0
Manfredi, Juan J.; Stroffolini, Bianca. Convergence of the natural p-means for the p-Laplacian. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 33. doi: 10.1051/cocv/2021026
[1] , , and , Variational approach to the asymptotic mean-value property for the p-Laplacian on Carnot groups. Nonlinear Anal. 198 (2020) 111893.
[2] , and , Tug-of-war games with varying probabilities and the normalized p(x)-Laplacian. Commun. Pure Appl. Anal. 16 (2017) 915–944.
[3] and , On the asymptotic mean value property for planar p-harmonic functions. Proc. Amer. Math. Soc. 144 (2016) 3859–3868.
[4] and , The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit time control problems. Commun. Partial Differ. Equ. 20 (1995) 129–178.
[5] and , Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4 (1991) 271–283.
[6] and , Game theory and nonlinear partial differential equations. Series in Nonlinear Analysis and Applications. De Gruyter (2019).
[7] , The one-dimensional nonlocal dominative p-laplace equation. Preprint (2020). | arXiv
[8] , , and , Variational p-harmonious functions: existence and convergence to p-harmonic functions. Preprint (2021). | arXiv
[9] , and , Convergence of dynamic programming principles for the p-Laplacian. To appear Adv. Calc. Variat. (2020) . | DOI
[10] , and , On the characterization of p-harmonic functions on the Heisenberg group by mean value properties. Discrete Contin. Dyn. Syst. 34 (2014) 2779–2793.
[11] , Functional integration and partial differential equations. Vol. 109 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (1985).
[12] , A dynamic programming principle with continuous solutions related to the p-Laplacian, 1 < p < ∞. Differ. Integral Equ. 29 (2016) 583–600.
[13] , and , A natural approach to the asymptotic mean value property for the p-Laplacian. Calc. Var. Partial Differ. Equ. 56 (2017) 97.
[14] , and , On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation. SIAM J. Math. Anal. 33 (2001) 699–717.
[15] , and , Solutions of nonlinear PDEs in the sense of averages. J. Math. Pures Appl. 97 (2012) 173–188.
[16] On absolutely minimizing Lipschitz extensions and PDE Δ$$(u) = 0. NoDEA Nonlinear Differ. Equ. Appl. 14 (2007) 29–55.
[17] and , Harmonious extensions. SIAM J. Math. Anal. 29 (1998) 279–292 (electronic).
[18] , On the definition and properties of p-superharmonic functions. J. Reine Angew. Math. 365 (1986) 67–79.
[19] and , General existence of solutions to dynamic programming equations. Commun. Pure Appl. Anal. 14 (2015) 167–184.
[20] , and , On the existence and uniqueness of p-harmonious functions. Differ. Integr. Equ. 27 (2014) 201–216.
[21] , and , An asymptotic mean value characterization for a class of nonlinear parabolic equationsrelated to tug-of-war games. SIAM J. Math. Anal. 42 (2010) 2058–2081.
[22] and , Second order equations with nonnegative characteristic form. Translated from the Russian by Paul C. Fife. Plenum Press, New York-London (1973).
[23] , , and , Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22 (2009) 167–210.
[24] and , Tug-of-war with noise: a game-theoretic view of the p-Laplacian. Duke Math. J. 145 (2008) 91–120.
[25] , Subharmonic Functions. Ergenbisse der Mathmatick und ihrer Grenzgebiete. Chelsea Publishing Co., New York, N. Y. (1949).
Cité par Sources :
Dedicated with admiration to our friend Enrique Zuazua on his 60$$-birthday.





