Convergence of the natural p-means for the p-Laplacian
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 33

We prove uniform convergence in Lipschitz domains of approximations to p-harmonic functions obtained using the natural p-means introduced by Ishiwata, Magnanini, and Wadade [Calc. Var. Partial Differ. Equ. 56 (2017) 97]. We also consider convergence of natural means in the Heisenberg group in the case of smooth domains.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021026
Classification : 35J92, 35D40, 49L20, 49L25, 35R02, 35B05, 35J62
Keywords: $$-Laplacian, natural $$-means, Dirichlet problem, Discrete approximations, asymptotic mean value properties, convergence, generalized viscosity solutions, Heisenberg group
@article{COCV_2021__27_1_A35_0,
     author = {Manfredi, Juan J. and Stroffolini, Bianca},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {Convergence of the natural \protect\emph{p}-means for the {\protect\emph{p}-Laplacian}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021026},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021026/}
}
TY  - JOUR
AU  - Manfredi, Juan J.
AU  - Stroffolini, Bianca
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - Convergence of the natural p-means for the p-Laplacian
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021026/
DO  - 10.1051/cocv/2021026
LA  - en
ID  - COCV_2021__27_1_A35_0
ER  - 
%0 Journal Article
%A Manfredi, Juan J.
%A Stroffolini, Bianca
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T Convergence of the natural p-means for the p-Laplacian
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021026/
%R 10.1051/cocv/2021026
%G en
%F COCV_2021__27_1_A35_0
Manfredi, Juan J.; Stroffolini, Bianca. Convergence of the natural p-means for the p-Laplacian. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 33. doi: 10.1051/cocv/2021026

[1] T. Adamowicz, A. Kijowski, A. Pinamonti and B. Warhurst, Variational approach to the asymptotic mean-value property for the p-Laplacian on Carnot groups. Nonlinear Anal. 198 (2020) 111893.

[2] Á. Arroyo, J. Heino and M. Parviainen, Tug-of-war games with varying probabilities and the normalized p(x)-Laplacian. Commun. Pure Appl. Anal. 16 (2017) 915–944.

[3] Á. Arroyo and J. G. Llorente, On the asymptotic mean value property for planar p-harmonic functions. Proc. Amer. Math. Soc. 144 (2016) 3859–3868.

[4] G. Barles and J. Burdeau, The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit time control problems. Commun. Partial Differ. Equ. 20 (1995) 129–178.

[5] G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4 (1991) 271–283.

[6] P. Blanc and J. D. Rossi, Game theory and nonlinear partial differential equations. Series in Nonlinear Analysis and Applications. De Gruyter (2019).

[7] K. K. Brustad, The one-dimensional nonlocal dominative p-laplace equation. Preprint (2020). | arXiv

[8] E. W. Chandra, M. Ishiwata, R. Magnanini and H. Wadade, Variational p-harmonious functions: existence and convergence to p-harmonic functions. Preprint (2021). | arXiv

[9] F. Del Teso, J. J. Manfredi and M. Parviainen, Convergence of dynamic programming principles for the p-Laplacian. To appear Adv. Calc. Variat. (2020) . | DOI

[10] F. Ferrari, Q. Liu and J. Manfredi, On the characterization of p-harmonic functions on the Heisenberg group by mean value properties. Discrete Contin. Dyn. Syst. 34 (2014) 2779–2793.

[11] M. Freidlin, Functional integration and partial differential equations. Vol. 109 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (1985).

[12] H. Hartikainen, A dynamic programming principle with continuous solutions related to the p-Laplacian, 1 < p < . Differ. Integral Equ. 29 (2016) 583–600.

[13] M. Ishiwata, R. Magnanini and H. Wadade, A natural approach to the asymptotic mean value property for the p-Laplacian. Calc. Var. Partial Differ. Equ. 56 (2017) 97.

[14] P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation. SIAM J. Math. Anal. 33 (2001) 699–717.

[15] B. Kawohl, J. Manfredi and M. Parviainen, Solutions of nonlinear PDEs in the sense of averages. J. Math. Pures Appl. 97 (2012) 173–188.

[16] E. Le Gruyer On absolutely minimizing Lipschitz extensions and PDE Δ$$(u) = 0. NoDEA Nonlinear Differ. Equ. Appl. 14 (2007) 29–55.

[17] E. Le Gruyer and J. C. Archer, Harmonious extensions. SIAM J. Math. Anal. 29 (1998) 279–292 (electronic).

[18] P. Lindqvist, On the definition and properties of p-superharmonic functions. J. Reine Angew. Math. 365 (1986) 67–79.

[19] Q. Liu and A. Schikorra, General existence of solutions to dynamic programming equations. Commun. Pure Appl. Anal. 14 (2015) 167–184.

[20] H. Luiro, M. Parviainen and E. Saksman, On the existence and uniqueness of p-harmonious functions. Differ. Integr. Equ. 27 (2014) 201–216.

[21] J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equationsrelated to tug-of-war games. SIAM J. Math. Anal. 42 (2010) 2058–2081.

[22] O. A. Oleĭnik and E. V. Radkevič, Second order equations with nonnegative characteristic form. Translated from the Russian by Paul C. Fife. Plenum Press, New York-London (1973).

[23] Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22 (2009) 167–210.

[24] Y. Peres and S. Sheffield, Tug-of-war with noise: a game-theoretic view of the p-Laplacian. Duke Math. J. 145 (2008) 91–120.

[25] T. Rado, Subharmonic Functions. Ergenbisse der Mathmatick und ihrer Grenzgebiete. Chelsea Publishing Co., New York, N. Y. (1949).

Cité par Sources :

Dedicated with admiration to our friend Enrique Zuazua on his 60$$-birthday.