Discrete-to-continuum limits of planar disclinations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 23

In materials science, wedge disclinations are defects caused by angular mismatches in the crystallographic lattice. To describe such disclinations, we introduce an atomistic model in planar domains. This model is given by a nearest-neighbor-type energy for the atomic bonds with an additional term to penalize change in volume. We enforce the appearance of disclinations by means of a special boundary condition. Our main result is the discrete-to-continuum limit of this energy as the lattice size tends to zero. Our proof relies on energy relaxation methods. The main mathematical novelty of our proof is a density theorem for the special boundary condition. In addition to our limit theorem, we construct examples of planar disclinations as solutions to numerical minimization of the model and show that classical results for wedge disclinations are recovered by our analysis.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021025
Classification : 74E15, 74Q05, 49J45, 35A15
Keywords: Disclinations, discrete to continuum limits, non-linear elasticity, relaxation, Gamma-convergence
@article{COCV_2021__27_1_A25_0,
     author = {Cesana, Pierluigi and Van Meurs, Patrick},
     title = {Discrete-to-continuum limits of planar disclinations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021025},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021025/}
}
TY  - JOUR
AU  - Cesana, Pierluigi
AU  - Van Meurs, Patrick
TI  - Discrete-to-continuum limits of planar disclinations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021025/
DO  - 10.1051/cocv/2021025
LA  - en
ID  - COCV_2021__27_1_A25_0
ER  - 
%0 Journal Article
%A Cesana, Pierluigi
%A Van Meurs, Patrick
%T Discrete-to-continuum limits of planar disclinations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021025/
%R 10.1051/cocv/2021025
%G en
%F COCV_2021__27_1_A25_0
Cesana, Pierluigi; Van Meurs, Patrick. Discrete-to-continuum limits of planar disclinations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 23. doi: 10.1051/cocv/2021025

[1] K. Anthony, U. Essmann, A. Seeger and H. Trauble, Disclinations and the Cosserat-Continuum with Incompatible Rotations, volume Mechanics of Generalized Continua, Proceedings of the IUTAM-Symposium on The Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications, Freudenstadt and Stuttgart (Germany), 1967. Springer-Verlag Berlin Heidelberg (1968) 355–358.

[2] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Ratl. Mech. Anal. 86 (1984) 125–145.

[3] M. P. Ariza and M. Ortiz, Discrete crystal elasticity and discrete dislocations in crystals. Arch. Ratl. Mech. Anal. 178 (2005) 149–226.

[4] J. Braun, M. Buze and C. Ortner, The effect of crystal symmetries on the locality of screw dislocation cores. SIAM J. Math. Anal. 51 (2019) 1108–1136.

[5] J. Ball, P. Cesana and P. Hambly, A probabilistic model for martensitic avalanches. MATEC Web Conf . 33 (2015) 1–6.

[6] K. Bhattacharya, Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press (2003).

[7] M. Buze, T. Hudson and C. Ortner, Analysis of an atomistic model for anti-plane fracture. Math. Models Methods Appl. Sci. 29 (2019) 2469–2521.

[8] J. Ball and R. James, Fine phase mixtures as minimizers of eenergies. Arch. Ration. Mech. Anal. 100 (1987) 13–52.

[9] P. Cesana, F. Della Porta, A. Rueland, C. Zillinger and B. Zwicknagl, Exact constructions in the (non-linear) planar theory of elasticity: from elastic crystals to nematic elastomers. Arch. Ratl. Mech. Anal. 237 (2020) 383–445.

[10] P. Cesana and P. Hambly, A probabilistic model for interfaces in a martensitic phase transition. Preprint (2018). | arXiv

[11] P. Cesana, M. Porta and T. Lookman, Asymptotic analysis of hierarchical martensitic microstructure. J. Mech. Phys. Solids 72 (2014) 174–192.

[12] S. Conti and B. Schweizer, Rigidity and gamma convergence for solid-solid phase transitions with SO(2) invariance. Commun. Pure Appl. Math. 59 (2006) 830–868.

[13] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer, Heidelberg, 2nd edition (2008).

[14] G. Dal Maso An Introduction to Γ-Convergence. Birkhäuser Verlag, Boston (1993).

[15] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573.

[16] R. De Wit Linear theory of static disclinations. Vol. 317 of Fundamental Aspects of Dislocation Theory, edited by J. A. Simmons, R. De Wit, and R. Bullough. Nat. Bur. Stand. (US), Spec. Publ. (1970) 651–673.

[17] R. De Wit Theory of disclinations: II. continuous and discrete disclinations in anisotropic elasticity. J. Res. Natl. Bureau Stand. A 77A (1973).

[18] R. De Wit Theory of disclinations: III. continuous and discrete disclinations in isotropic elasticity. J. Res. Natl. Bureau Stand. A 73A (1973).

[19] R. De Wit Theory of disclinations: IV. straight disclinations. J. Res. Natl. Bureau Stand. A 77A (1973).

[20] V. Ehrlacher, C. Ortner and A. V. Shapeev, Analysis of boundary conditions for crystal defect atomistic simulations. Arch. Ratl. Mech. Anal. 222 (2016) 1217–1268.

[21] I. Ekeland and R. Temam, Vol. 28 of Convex Analysis and Variational Problems. SIAM (1999).

[22] D. Essmann and H. Träuble, The direct observation of individual flux lines in type ii superconductors. Phys. Lett. 24A (1967).

[23] G. Friesecke, R. James and S. Müller, A theorem on geometric rigidity and the derivation of non linear plate theory from three dimensional elasticity. Commun. Pure Appl. Math. 55 (2002) 1461—1506.

[24] E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Sem. Mat. Univ. Padova 27 (1957) 284–305.

[25] K. Hagihara, T. Mayama, M. Honnami, M. Yamasaki, H. Izuno, T. Okamoto, T. Ohashi, T. Nakano and Y. Kawamura, Orientation dependence of the deformation kink band formation behavior in Zn single crystal. Int. J. Plasticity 77 (2016) 174–191.

[26] K. Hagihara, T. Okamoto, H. Izuno, M. Yamasaki, M. Matsushita, T. Nakano and Y. Kawamura, Plastic deformation behavior of 10H-type synchronized LPSO phase in a Mg-Zn-Y system. Acta Mater. 109 (2016) 90–102.

[27] T. Hudson and C. Ortner, Existence and stability of a screw dislocation under anti-plane deformation. Arch. Ratl. Mech. Anal. 213 (2014) 887–929.

[28] T. Hudson and C. Ortner, Analysis of stable screw dislocation configurations in an antiplane lattice model. SIAM J. Math. Anal. 47 (2015) 291–320.

[29] T. Inamura, H. Hosoda and S. Miyazaki, Incompatibility and preferred morphology in the self-accommodation microstructure of β-titanium shape memory alloy. Philos. Mag. 93 (2013) 618–634.

[30] T. Inamura, M. Li, M. Tahara and H. Hosoda, Formation process of the incompatible martensite microstructure in a beta-titanium shape memory alloy. Acta Mater. 124 (2017) 351–359.

[31] T. Inamura, Geometry of kink microstructure analysed by rank-1 connection. Acta Mater. 173 (2019) 270–280.

[32] Y. Kitano and K. Kifune, HREM study of disclinations in MgCd ordered alloy. Ultramicroscopy 39 (1991) 279–286.

[33] R. Kupferman and C. Maor, Variational convergence of discrete geometrically-incompatible elastic models. Calc. Var. Partial Differ. Equ. 57 (2018).

[34] M. Lazar, Wedge disclination in the field theory of elastoplasticity. Phys. Lett. A 311 (2003) 416–425.

[35] G. Lazzaroni, M. Palombaro and A. Schlömerkemper, A discrete to continuum analysis of dislocations in nanowire heterostructures. Commun. Math. Sci. 13 (2015) 1105–1133.

[36] X. W. Lei and A. Nakatani, A deformation mechanism for ridge-shaped kink structure in layered solids. J. Appl. Mech. 82 (2015) 071016.

[37] C. Manolikas and S. Amelinckx, Phase transitions in ferroelastic lead orthovanadate as observed by means of electron microscopy and electron diffraction. Phys. Stat. Sol. 60 (1980) 607–617.

[38] F. R. N. Nabarro, Theory of crystal dislocations. International Series of Monographs on Physics. Oxford: Clarendon Press (1967).

[39] M. Porta and T. Lookman, Heterogeneity and phase transformation in materials: energy minimization, iterative methods and geometric nonlinearity. Acta Mater. 61 (2013) 5311–5340.

[40] M. Ponsiglione, Elastic energy stored in a crystal induced by screw dislocations: from discrete to continuous. SIAM J. Math. Anal. 39 (2007) 449–469.

[41] A. E. Romanov and V. I. Vladimirov, in Vol. 9 of Dislocations in solids, edited by F. R. N. Nabarro. North-Holland, Amsterdam (1992) 191.

[42] S. Seung, and R. Nelson, Defects in flexible membranes with crystalline order. Phys. Rev. A 38 (1988) 1005.

[43] H. Träuble and D. Essmann, Fehler im flussliniengitter von supraleitern zweiter art. Phys. Stat. Sol. 25 (1968).

[44] V. Volterra, Sur l’équilibre des corps élastiques multiplement connexes. Ann. scientifiques de l’École Normale Supérieure 24 (1907) 401–517.

[45] C. Zhang and A. Acharya, On the relevance of generalized disclinations in defect mechanics. J. Mech. Phys. Solids 119 (2018) 188–223.

[46] L. M. Zubov, Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Lecture Notes in Physics Monographs. Springer (1997).

Cité par Sources :