Coupled versus decoupled penalization of control complementarity constraints
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 45

This paper deals with the numerical solution of optimal control problems with control complementarity constraints. For that purpose, we suggest the use of several penalty methods which differ with respect to the handling of the complementarity constraint which is either penalized as a whole with the aid of NCP-functions or decoupled in such a way that non-negativity constraints as well as the equilibrium condition are penalized individually. We first present general global and local convergence results which cover several different penalty schemes before two decoupled methods which are based on a classical 1- and 2-penalty term, respectively, are investigated in more detail. Afterwards, the numerical implementation of these penalty methods is discussed. Based on some examples, where the optimal boundary control of a parabolic partial differential equation is considered, some quantitative properties of the resulting algorithms are compared.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021022
Classification : 49K20, 49M05, 49M25
Keywords: Complementarity constraints, optimal control, parabolic PDE, penalty method
@article{COCV_2021__27_1_A47_0,
     author = {Deng, Yu and Mehlitz, Patrick and Pr\"ufert, Uwe},
     title = {Coupled \protect\emph{versus} decoupled penalization of control complementarity constraints},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021022},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021022/}
}
TY  - JOUR
AU  - Deng, Yu
AU  - Mehlitz, Patrick
AU  - Prüfert, Uwe
TI  - Coupled versus decoupled penalization of control complementarity constraints
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021022/
DO  - 10.1051/cocv/2021022
LA  - en
ID  - COCV_2021__27_1_A47_0
ER  - 
%0 Journal Article
%A Deng, Yu
%A Mehlitz, Patrick
%A Prüfert, Uwe
%T Coupled versus decoupled penalization of control complementarity constraints
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021022/
%R 10.1051/cocv/2021022
%G en
%F COCV_2021__27_1_A47_0
Deng, Yu; Mehlitz, Patrick; Prüfert, Uwe. Coupled versus decoupled penalization of control complementarity constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 45. doi: 10.1051/cocv/2021022

[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces. Elsevier Science (2003).

[2] J. T. Betts and S. L. Campbell, Discretize then Optimize. Mathematics in Industry: Challenges and Frontiers A Process View: Practice and Theory. Edited by D. R. Ferguson and T. J. Peters. SIAM Publications, Philadelphia (2005).

[3] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer (2000).

[4] A. Borzi, Multigrid methods for parabolic distributed optimal control problems. J. Comput. Appl. Math. 157 (2003) 365–382.

[5] J. C. Butcher, Numerical Methods for Ordinary Differential Equations. Wiley & Sons, Chichester (2016).

[6] E. Casas, Second order analysis for bang-bang control problems of PDEs. SIAM J. Control Optim. 50 (2012) 2355–2372.

[7] E. Casas and M. Mateos, Critical cones for sufficient second order conditions in PDE constrained optimization. SIAM J. Optim. 30 (2020) 585–603.

[8] C. Christof and G. Wachsmuth, On second-order optimality conditions for optimal control problems governed by the obstacle problem. Optimization 2020 (2020) 1–41.

[9] F. H. Clarke, Optimization and Nonsmooth Analysis. Wiley (1983).

[10] C. Clason, Y. Deng, P. Mehlitz and U. Prüfert, Optimal control problems with control complementarity constraints: existence results, optimality conditions, and a penalty method. Optim. Methods Softw. 35 (2020) 142–170.

[11] C. Clason, K. Ito and K. Kunisch, A convex analysis approach to optimal controls with switching structure for partial differential equations. ESAIM: COCV 22 (2016) 581–609.

[12] C. Clason, A. Rund and K. Kunisch, Nonconvex penalization of switching control of partial differential equations. Syst. Control Lett. 106 (2017) 1–8.

[13] C. Clason, A. Rund, K. Kunisch and R. C. Barnard, A convex penalty for switching control of partial differential equations. Syst. Control Lett. 89 (2016) 66–73.

[14] Y. Deng, P. Mehlitz and U. Prüfert, Optimal control in first-order Sobolev spaces with inequality constraints. Comput. Optim. Appl. 72 (2019) 797–826.

[15] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213.

[16] J. C. Dunn, On Second order sufficient conditions for structured nonlinear programs in infinite-dimensional function spaces. In Math. Program. with Data Perturbations. Edited by A. V. Fiacco. Marcel Dekker Inc., New York (1998) 83–108.

[17] A. Fischer, A special Newton-type optimization method. Optimization 24 (1992) 269–284.

[18] A. Galántai, Properties and construction of NCP functions. Comput. Optim. Appl. 52 (2012) 805–824.

[19] C. Geiger and C. Kanzow, Theorie und Numerik restringierter Optimierungsaufgaben. Springer, Berlin (2002).

[20] L. Guo and J. J. Ye, Necessary optimality conditions for optimal control problems with equilibrium constraints. SIAM J. Control Optim. 54 (2016) 2710–2733.

[21] F. Harder and G. Wachsmuth, Comparison of optimality systems for the optimal control of the obstacle problem. GAMM-Mitteilungen 40 (2018) 312–338.

[22] F. Harder and G. Wachsmuth, The limiting normal cone of a complementarity set in Sobolev spaces. Optimization 67 (2018) 1579–1603.

[23] M. Hintermüller, B. S. Mordukhovich and T. M. Surowiec, Several approaches for the derivation of stationarity conditions for elliptic MPECs with upper-level control constraints. Math. Program. 146 (2014) 555–582.

[24] M. Hintermüller and T. M. Surowiec, First-order optimality conditions for elliptic mathematical programs with equilibrium constraints via variational analysis. SIAM J. Optim. 21 (2011) 1561–1593.

[25] M. Hintermüller and T. M. Surowiec, On the directional differentiability of the solution mapping for a class of variational inequalities of the second kind. Set-Valued Variat. Anal. 26 (2017) 631–642.

[26] M. Hintermüller and M. Ulbrich, A mesh-independence result for semismooth Newton methods. Math. Program. 101 (2004) 151–184.

[27] T. Hoheisel, C. Kanzow and A. Schwartz, Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints. Math. Program. 137 (2013) 257–288.

[28] X. M. Hu and D. Ralph, Convergence of a penalty method for mathematical programs with complementarity constraints. J. Optim. Theory Appl. 123 (2004) 365–390.

[29] X. X. Huang, X. Q. Yang and D. L. Zhu, A sequential smooth penalization approach to mathematical programs with complementarity constraints. Numer. Funct. Anal. Optim. 27 (2006) 71–98.

[30] C. Kanzow and A. Schwartz, Mathematical programs with equilibrium constraints: enhanced Fritz–John-conditions, new constraint qualifications, and improved exact penalty results. SIAM J. Optim. 20 (2010) 2730–2753.

[31] C. Kanzow, N. Yamashita and M. Fukushima, New NCP-functions and their properties. J. Optim. Theory Appl. 94 (1997) 115–135.

[32] K. Kunisch and D. Wachsmuth, Sufficient optimality conditions and semi-smooth Newton methods for optimal control of stationary variational inequalities. ESAIM: COCV 18 (2012) 520–547.

[33] S. Leyffer, G. López-Calva and J. Nocedal, Interior methods for mathematical programs with complementarity constraints. SIAM J. Optim. 17 (2006) 52–77.

[34] G. Liu, J. Ye and J. Zhu, Partial exact penalty for mathematical programs with equilibrium constraints. Set-Valued Anal. 16 (2008) 785.

[35] Z.-Q. Luo, J.-S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints. Cambridge University Press (1996).

[36] Z.-Q. Luo, J.-S. Pang, D. Ralph and S.-Q. Wu, Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints. Math. Program. 75 (1996) 19–76.

[37] H. Maurer and J. Zowe, First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Program. 16 (1979) 98–110.

[38] P. Mehlitz and G. Wachsmuth, The limiting normal cone to pointwise defined sets in Lebesgue spaces. Set-Valued Variat. Anal. 26 (2018) 449–467.

[39] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. Springer-Verlag (2006).

[40] I. Neitzel, U. Prüfert and T. Slawig, Strategies for time-dependent PDE control with inequality constraints using an integrated modeling and simulation environment. Numerical Algor. 50 (2009) 241–269.

[41] J.-S. Pang and D. E. Stewart, Differential variational inequalities. Math. Program. A 113 (2008) 345–424.

[42] L. Petzold, J. B. Rosen, P. E. Gill, L. O. Jay and K. Park, Numerical optimal control of parabolic PDEs using DASOPT. In Large-Scale Optimization with Applications. Edited by L. T. Biegler, T. F. Coleman, A. R. Conn, and F. N. Santosa. Vol. 93 of The IMA Volumes in Mathematics and its Applications. Springer, New York (1997).

[43] U. Prüfert, OOPDE: An object oriented toolbox for finite elements in Matlab. TU Bergakademie Freiberg (2015).

[44] U. Prüfert, Solving optimal PDE control problems. Optimality conditions, algorithms and model reduction. Habilitation thesis, TU Bergakademie Freiberg (2016).

[45] D. Ralph and S. J. Wright, Some properties of regularization and penalization schemes for MPECs. Optim. Methods Softw. 19 (2004) 527–556.

[46] S. Scheeland S. Scholtes, Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25 (2000) 1–22.

[47] A. Schiela and D. Wachsmuth, Convergence analysis of smoothing methods for optimal control of stationary variational inequalities with control constraints. ESAIM: M2AN 47 (2013) 771–787.

[48] S. Scholtes and M. Stöhr, Exact penalization of mathematical programs with equilibrium constraints. SIAM J. Control Optim. 37 (1999) 617–652.

[49] D. Sun and L. Qi, On NCP-functions. Comput. Optim. Appl. 13 (1999) 201–220.

[50] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications. American Mathematical Society (2010).

[51] M. Ulbrich, Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13 (2002) 805–841.

[52] M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. MOS-SIAM (2011).

[53] G. Wachsmuth, Mathematical programs with complementarity constraints in Banach spaces. J. Optim. Theory Appl. 166 (2015) 480–507.

[54] G. Wachsmuth, Towards M-stationarity for optimal control of the obstacle problem with control constraints. SIAM J. Control Optim. 54 (2016) 964–986.

[55] G. Wachsmuth, Elliptic quasi-variational inequalities under a smallness assumption: uniqueness, differential stability and optimal control. Calc. Variat. Partial Differ. Equ. 59 (2020).

[56] J. Wloka, Partielle Differentialgleichungen: Sobolevräume und Randwertaufgaben. Teubner (1982).

[57] J. J. Ye, Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 307 (2005) 350–369.

[58] F. Yılmaz and B. Karasözen, An all-at-once approach for the optimal control of the unsteady Burgers equation. J. Comput. Appl. Math. 259 (2014) 771–779.

Cité par Sources :