Regularity results for a class of obstacle problems with p, q−growth conditions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 19

In this paper we prove the the local Lipschitz continuity for solutions to a class of obstacle problems of the type

$$

Here $$ is the set of admissible functions zu0 + W$$(Ω) for a given u0W$$(Ω) such that zψ a.e. in Ω, ψ being the obstacle and Ω being an open bounded set of ℝ$$, n ≥ 2. The main novelty here is that we are assuming that the integrand F(x, Dz) satisfies (p, q)-growth conditions and as a function of the x-variable belongs to a suitable Sobolev class. We remark that the Lipschitz continuity result is obtained under a sharp closeness condition between the growth and the ellipticity exponents. Moreover, we impose less restrictive assumptions on the obstacle with respect to the previous regularity results. Furthermore, assuming the obstacle ψ is locally bounded, we prove the local boundedness of the solutions to a quite large class of variational inequalities whose principal part satisfies non standard growth conditions.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021017
Classification : 35J87, 49J40, 47J20
Keywords: Variational inequalities, obstacle problems, local boundedness, local Lipschitz continuity
@article{COCV_2021__27_1_A21_0,
     author = {Caselli, M. and Eleuteri, M. and Passarelli di Napoli, A.},
     title = {Regularity results for a class of obstacle problems with \protect\emph{p}, \protect\emph{q}\ensuremath{-}growth conditions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021017},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021017/}
}
TY  - JOUR
AU  - Caselli, M.
AU  - Eleuteri, M.
AU  - Passarelli di Napoli, A.
TI  - Regularity results for a class of obstacle problems with p, q−growth conditions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021017/
DO  - 10.1051/cocv/2021017
LA  - en
ID  - COCV_2021__27_1_A21_0
ER  - 
%0 Journal Article
%A Caselli, M.
%A Eleuteri, M.
%A Passarelli di Napoli, A.
%T Regularity results for a class of obstacle problems with p, q−growth conditions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021017/
%R 10.1051/cocv/2021017
%G en
%F COCV_2021__27_1_A21_0
Caselli, M.; Eleuteri, M.; Passarelli di Napoli, A. Regularity results for a class of obstacle problems with p, q−growth conditions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 19. doi: 10.1051/cocv/2021017

[1] C. Benassi and M. Caselli, Lipschitz continuity results for obstacle problems. Rendiconti Lincei, Matematica e Applicazioni 31 (2020) 191–210.

[2] L. Beck and G. Mingione, Lipschitz bounds and nonuniform ellipticity. Commun. Pure Appl. Math. 73 (2020) 944–1034.

[3] V. Bögelein, F. Duzaar and P. Marcellini, Parabolic systems with p, q-growth: a variational approach. Arch. Ration. Mech. Anal. 210 (2013) 219–267.

[4] L. Caffarelli, The regularity of elliptic and parabolic free boundaries. Bull. Am. Math. Soc. 82 (1976) 616–618.

[5] L. A. Caffarelli and A. Figalli, Regularity of solutions to the parabolic fractional obstacle problem. J. Reine Angew. Math. 680 (2013) 191–233.

[6] M. Carozza, J. Kristensen and A. Passarelli Di Napoli, Regularity of minimizers of autonomous convex variational integrals. Ann. Sc. Norm. Super. Pisa Cl. Sci. XIII (2014) 1065–1089.

[7] M. Carozza, J. Kristensen and A. Passarelli Di Napoli, On the validity of the Euler Lagrange system. Commun. Pure Appl. Anal. 14 (2018) 51–62.

[8] M. Caselli, A. Gentile and R. Giova, Regularity results for solutions to obstacle problems with Sobolev coefficients. J. Diff. Equ. 269 (2020) 8308–8330.

[9] I. Chlebicka and C. De Filippis, Removable sets in non-uniformly elliptic problems. Annali Mat. Pura Appl. 199 (2020) 619–649. .

[10] M. Colombo and G. Mingione, Regularity for double phase variational problems. Arch. Rat. Mech. Anal. 215 (2015) 443–496.

[11] G. Cupini, F. Giannetti, R. Giova and A. Passarelli Di Napoli, Regularity results for vectorial minimizers of a class of degenerate convex integrals. J. Diff. Equ. 265 (2018) 4375–4416.

[12] G. Cupini, M. Guidorzi and E. Mascolo, Regularity of minimizers of vectorial integrals with pq growth. Nonlinear Anal. 54 (2003) 591–616.

[13] G. Cupini, P. Marcellini and E. Mascolo, Local boundedness of solutions to quasilinear elliptic systems. Manuscr. Math. 137 (2012) 287–315.

[14] G. Cupini, P. Marcellini and E. Mascolo, Local boundedness of solutions to some anisotropic elliptic systems. Contemp. Math. 595 (2013) 169–186.

[15] G. Cupini, P. Marcellini and E. Mascolo, Local boundedness of minimizers with limit growth conditions. J. Optim. Theory Appl. 166 (2015) 1–22.

[16] C. De Filippis, Regularity results for a class of non-autonomous obstacle problems with (p, q)-growth. To appear J. Math. Anal. Appl. (2019). | DOI

[17] C. De Filippis and G. Mingione, On the regularity of minima of non-autonomous functionals. J. Geom. Anal. 30 (2020) 1661–1723.

[18] C. De Filippis and G. Mingione, Lipschitz bounds and non autonomous integrals. Preprint (2020). | arXiv

[19] C. De Filippis and G. Palatucci, Hölder regularity for nonlocal double phase equations. J. Diff. Equ. 267 (2018) 547–586.

[20] M. Eleuteri, P. Marcellini and E. Mascolo, Lipschitz estimates for systems with ellipticity conditions at infinity. Ann. Mat. Pura e Appl. 195 (2016) 1575–1603.

[21] M. Eleuteri, P. Marcellini and E. Mascolo, Lipschitz continuity for energy integrals with variable exponents. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27 (2016) 61–87.

[22] M. Eleuteri, P. Marcellini and E. Mascolo, Regularity for scalar integrals without structure conditions. Adv. Calc. Var. 13 (2020) 279–300.

[23] M. Eleuteri and A. Passarelli Di Napoli, Higher differentiability for solutions to a class of obstacle problems. Calc. Var. Partial Differ. Equ. 57 (2018) 115.

[24] M. Eleuteri and A. Passarelli Di Napoli, Regularity results for a class of non-differentiable obstacle problems. Nonlinear Anal. 194 (2020) 111434.

[25] A. Figalli, B. Krummel and X. Ros-Oton, On the regularity of the free boundary in the p-Laplacian obstacle problem. J. Differ. Equ. 263 (2017) 1931–1945.

[26] M. Fuchs, Variational inequalities for vector valued functions with non convex obstacles. Analysis 5 (1985) 223–238.

[27] M. Fuchs and G. Mingione, Full regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth. Manuscripta Math. 102 (2000) 227–250.

[28] C. Gavioli, Higher differentiability for a class of obstacle problems with nonstandard growth conditions. Forum Matematicum 31 (2019) 1501–1516.

[29] R. Giova, Higher differentiability for n-harmonic systems with Sobolev coefficients. J. Differ. Equ. 259 (2015) 5667–5687.

[30] R. Giova and A. Passarelli Di Napoli, Regularity results for a priori bounded minimizers of non-autonomous functionals with discontinuous coefficients. Adv. Calc. Var. 12 (2019) 85–110.

[31] E. Giusti, Direct methods in the calculus of variations. World Scientific Publishing Co. (2003).

[32] P. Hariulehto and P. Hästö, Double phase image restoration. J. Math. Anal. Appl. 2020 (2020) 123832.

[33] J. Hirschand M. Schäffner, Growth conditions and regularity, an optimal local boundedness result. Commun. Contemp. Math. 2020 (2020) 2050029.

[34] P. Marcellini, Un example de solution discontinue d’un problème variationnel dans le cas scalaire. Preprint 11, Istituto Matematico “U. Dini”, Università di Firenze (1987).

[35] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions. Arch. Ration. Mech. Anal. 105 (1989) 267–284.

[36] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions. J. Differ. Equ. 90 (1991) 1–30.

[37] P. Marcellini, Regularity for elliptic equations with general growth conditions. J. Differ. Equ. 105 (1993) 296–333.

[38] P. Marcellini, A variational approach to parabolic equations under general and p, q-growth conditions. Nonlinear Anal. (2019), DOI . | DOI

[39] A. Passarelli Di Napoli, Higher differentiability of minimizers of variational integrals with Sobolev coefficients. Adv. Calc. Var. 7 (2014) 59–89.

[40] A. Passarelli Di Napoli, Higher differentiability of solutions of elliptic systems with Sobolev coefficients: the case p = n = 2. Pot. Anal. 41 (2014) 715–735.

[41] A. Passarelli Di Napoli, Regularity results for non-autonomous variational integrals with discontinuous coefficients. Atti Accad. Naz. Lincei, Rend. Lincei Mat. Appl. 26 (2015) 475–496.

[42] A. Petrosyan, H. Shahgholian and N. Uraltseva, Regularity of Free Boundaries in Obstacle-Type Problems. Graduate Studies in Mathematics. American Mathematical Society (2012).

[43] M. A. Ragusa and A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9 (2019) 710–728.

Cité par Sources :