Regularizing effect of the interplay between coefficients in Dirichlet problems with convection or drift terms
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 47

There are very important results by Enrique Zuazua on the subject of the convection-diffusion equation

$$

In some sense this paper deals with a linear (i.e. q = 1) elliptic counterpart of the above equation if d is not constant.

We prove regularizing results on the solutions, under assumptions of interplay between the datum and the coefficient of the zero order term or between the modulus of the drift and the coefficient of the zero order term.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021015
Classification : 35J15, 35J60
Keywords: Regularizing effect, interplay between coefficients, problems with convection terms, problems with drift terms
@article{COCV_2021__27_1_A49_0,
     author = {Boccardo, Lucio},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {Regularizing effect of the interplay between coefficients in {Dirichlet} problems with convection or drift terms},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021015},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021015/}
}
TY  - JOUR
AU  - Boccardo, Lucio
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - Regularizing effect of the interplay between coefficients in Dirichlet problems with convection or drift terms
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021015/
DO  - 10.1051/cocv/2021015
LA  - en
ID  - COCV_2021__27_1_A49_0
ER  - 
%0 Journal Article
%A Boccardo, Lucio
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T Regularizing effect of the interplay between coefficients in Dirichlet problems with convection or drift terms
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021015/
%R 10.1051/cocv/2021015
%G en
%F COCV_2021__27_1_A49_0
Boccardo, Lucio. Regularizing effect of the interplay between coefficients in Dirichlet problems with convection or drift terms. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 47. doi: 10.1051/cocv/2021015

[1] D. Arcoya and L. Boccardo, Regularizing effect of the interplay between coefficients in some elliptic equations. J. Funct. Anal. 268 (2015) 1153–1166.

[2] D. Arcoya and L. Boccardo, Regularizing effect of L$$ interplay between coefficients in some elliptic equations. J. Math. Pures Appl. 111 (2018) 106–125.

[3] D. Arcoya, L. Boccardo and L. Orsina, Regularizing effect of the interplay between coefficients in some nonlinear Dirichlet problems with distributional data. Ann. Mat. Pura Appl. 199 (2020) 1909–1921.

[4] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995) 241–273.

[5] L. Boccardo, Some developments on Dirichlet problems with discontinuous coefficients. Boll. U.M.I. 2 (2009) 285–297.

[6] L. Boccardo, Dirichlet problems with singular convection terms and applications. J. Differ. Equ. 258 (2015) 22902314.

[7] L. Boccardo, Stampacchia-Calderon-Zygmund theory for linear elliptic equations with discontinuous coefficients and singular drift. ESAIM: COCV 25 (2019) 47.

[8] L. Boccardo, Finite energy weak solutions to some Dirichlet problems with very singular drift. Differ. Integr. Equ. 32 (2019) 409–422.

[9] L. Boccardo and S. Buccheri, A nonlinear homotopy between two linear Dirichlet problems. Rev. Mat. Complut. 34 (2021) 541–558.

[10] L. Boccardo, S. Buccheri and G. R. Cirmi, Two linear noncoercive dirichlet problems in duality. Milan J. Math. 86 (2018) 97–104.

[11] L. Boccardo, S. Buccheri and G. R. Cirmi, Calderon-Zygmund-Stampacchia theory for infinite energy solutions of nonlinear elliptic equations with singular drift. NoDEA Nonlinear Differ. Equ. Appl. 27 (2020) 38.

[12] L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures. Commun. Partial Differ. Equ. 17 (1992) 641–655.

[13] L. Boccardo and L. Orsina, Very singular solutions for linear Dirichlet problems with singular convection terms. To appear Nonlinear Anal. TMA..

[14] G. Bottaro and M. E. Marina, Problema di Dirichlet per equazioni ellittiche di tipo variazionale su insiemi non limitati. Boll. U. M. I. 8 (1973) 46–56.

[15] S. Buccheri, Gradient estimates for nonlinear elliptic equations with first order terms. Manuscr. Math. (2020) . | DOI

[16] S. Buccheri, The Bottaro-Marina slice method for distributional solutions to elliptic equations with drift term, in preparation.

[17] T. Del Vecchio and M. M. Porzio, Existence results for a class of non-coercive Dirichlet problems. Ric. Mat. 44 (1995) 421–438.

[18] T. Del Vecchio and M. R. Posteraro, Existence and regularity results for nonlinear elliptic equations with measure data. Adv. Differ. Equ. 1 (1996) 899–917.

[19] G. Duro and E. Zuazua, Large time behavior for convection-diffusion equations in RN with periodic coefficients. J. Differ. Equ. 167 (2000) 275–315.

[20] G. Duro and E. Zuazua, Large time behavior for convection-diffusion equations in RN with asymptotically constant diffusion. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 1419–1424.

[21] M. Escobedo and E. Zuazua, Long-time behaviour of diffusion waves for a viscous system of conservation laws in ℝ$$. Asymptot. Anal. 20 (1999) 133–173.

[22] J. Serrin, Pathological solutions of elliptic differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18 (1964) 385–387.

[23] G. Stampacchia: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 189–258.

Cité par Sources :