Optimization of non-cylindrical domains for the exact null controllability of the 1D wave equation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 13

This work is concerned with the null controllability of the one-dimensional wave equation over non-cylindrical distributed domains. The controllability in that case has been obtained by Castro et al. [SIAM J. Control Optim. 52 (2014)] for domains satisfying the usual geometric optic condition. We analyze the problem of optimizing the non-cylindrical support q of the control of minimal L2(q)-norm. In this respect, we prove a uniform observability inequality for a class of domains q satisfying the geometric optic condition. The proof based on the d’Alembert formula relies on arguments from graph theory. Numerical experiments are discussed and highlight the influence of the initial condition on the optimal domains.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021010
Classification : 49Q10, 93C20
Keywords: Wave equation, Uniform observability, Optimal shape
@article{COCV_2021__27_1_A15_0,
     author = {Bottois, Arthur and C{\^\i}ndea, Nicolae and M\"unch, Arnaud},
     title = {Optimization of non-cylindrical domains for the exact null controllability of the {1D} wave equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021010},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021010/}
}
TY  - JOUR
AU  - Bottois, Arthur
AU  - Cîndea, Nicolae
AU  - Münch, Arnaud
TI  - Optimization of non-cylindrical domains for the exact null controllability of the 1D wave equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021010/
DO  - 10.1051/cocv/2021010
LA  - en
ID  - COCV_2021__27_1_A15_0
ER  - 
%0 Journal Article
%A Bottois, Arthur
%A Cîndea, Nicolae
%A Münch, Arnaud
%T Optimization of non-cylindrical domains for the exact null controllability of the 1D wave equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021010/
%R 10.1051/cocv/2021010
%G en
%F COCV_2021__27_1_A15_0
Bottois, Arthur; Cîndea, Nicolae; Münch, Arnaud. Optimization of non-cylindrical domains for the exact null controllability of the 1D wave equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 13. doi: 10.1051/cocv/2021010

[1] H. Banks, W. Fang, R. Silcox and R. Smith, Approximation methods for control of structural acoustics models with piezoceramic actuators. J. Intell. Mater. Syst. Struct. 4 (1993) 98–116.

[2] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065.

[3] A. Bottois, Pointwise moving control for the 1-D wave equation – Numerical approximation and optimization of the support. To appear in Radon Series on Computational and Applied Mathematics. De Gruyter, In press. (2021). | HAL

[4] A. E. Brouwer and W. H. Haemers, Spectra of graphs, Universitext. Springer, New York (2012).

[5] C. Castro, Exact controllability of the 1-D wave equation from a moving interior point. ESAIM: COCV 19 (2013) 301–316.

[6] C. Castro, N. Cîndea and A. Münch, Controllability of the linear one-dimensional wave equation with inner moving forces. SIAM J. Control Optim. 52 (2014) 4027–4056.

[7] D. Chenais, On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52 (1975) 189–219.

[8] F. R. K. Chung, Spectral graph theory. Vol. 92 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1997).

[9] N. Cîndea and A. Münch, A mixed formulation for the direct approximation of the control of minimal L2-norm for linear type wave equations. Calcolo 52 (2015) 245–288.

[10] J.-M. Coron, Control and nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007).

[11] L. Cui, X. Liu and H. Gao, Exact controllability for a one-dimensional wave equation in non-cylindrical domains. J. Math. Anal. Appl. 402 (2013) 612–625.

[12] P. Destuynder, I. Legrain, L. Castel and N. Richard, Theoretical, numerical and experimental discussion on the use of piezoelectric devices for control–structure interaction. Eur. J. Mech. A. Solids 11 (1992) 181–213.

[13] B. H. Haak and D.-T. Hoang, Exact observability of a 1-dimensional wave equation on a noncylindrical domain. SIAM J. Control Optim. 57 (2019) 570–589.

[14] F. Hecht, New development in Freefem++. J. Numer. Math. 20 (2012) 251–265.

[15] A. Henrot and M. Pierre, Variation et optimisation de formes. Une analyse géométrique. [A geometric analysis]. Vol. 48 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin (2005).

[16] A. Y. Khapalov, Controllability of the wave equation with moving point control. Appl. Math. Optim. 31 (1995) 155–175.

[17] J. Le Rousseau, G. Lebeau, P. Terpolilli and E. Trélat, Geometric control condition for the wave equation with a time-dependent observation domain. Anal. Partial Differ. Equ. 10 (2017) 983–1015.

[18] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Contrôlabilité exacte. [Exact controllability], With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch. Tome 1. Vol. 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris (1988).

[19] K. Liu and J. Yong, Rapid exact controllability of the wave equation by controls distributed on a time-variant subdomain. Chin. Ann. Math. Ser. B 20 (1999) 65–76. A Chinese summary appears in Chin. Ann. Math. Ser. A 20 (1999) 142.

[20] K. A. Lurie, An introduction to the mathematical theory of dynamic materials. Vol. 15 of Advances in Mechanics and Mathematics. Second edition, Springer, Cham (2017) MR2305885.

[21] P. Martin, L. Rosier and P. Rouchon, Null controllability of the structurally damped wave equation with moving control. SIAM J. Control Optim. 51 (2013) 660–684.

[22] B. Mohar, The Laplacian spectrum of graphs. Vol. 2 of Graph theory, combinatorics, and applications. (Kalamazoo, MI, 1988). Wiley-Intersci. Publ., Wiley, New York (1991) 871–898.

[23] A. Münch, Optimal design of the support of the control for the 2-D wave equation: a numerical method. Int. J. Numer. Anal. Model. 5 (2008) 331–351.

[24] A. Münch, Optimal location of the support of the control for the 1-D wave equation: numerical investigations. Comput. Optim. Appl. 42 (2009) 443–470.

[25] A. Münch, Numerical estimations of the cost of boundary controls for the equation yt εyxx + Myx = 0 with respect to ε, in Recent advances in PDEs: analysis, numerics and control. Vol. 17 of SEMA SIMAI Springer Ser. Springer, Cham (2018) 159–191.

[26] A. Münch, P. Pedregal and F. Periago, Optimal design of the damping set for the stabilization of the wave equation. J. Differ. Equ. 231 (2006) 331–358.

[27] A. O. Özer, Potential formulation for charge or current-controlled piezoelectric smart composites and stabilization results: electrostatic versus quasi-static versus fully-dynamic approaches. IEEE Trans. Automat. Control 64 (2019) 989–1002.

[28] A. O. Özer and K. A. Morris, Modeling and stabilization of current-controlled piezo-electric beams with dynamic electromagnetic field. ESAIM:COCV 26 (2020) 24.

[29] F. Periago, Optimal shape and position of the support for the internal exact control of a string. Systems Control Lett. 58 (2009) 136–140.

[30] Y. Privat, E. Trélat and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 30 (2013) 1097–1126.

[31] Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation. J. Fourier Anal. Appl. 19 (2013) 514–544.

[32] A. Shao, On Carleman and observability estimates for wave equations on time-dependent domains. Proc. Lond. Math. Soc. 119 (2019) 998–1064.

[33] M. Tucsnak, Control of plate vibrations by means of piezoelectric actuators. Discrete Contin. Dynam. Syst. 2 (1996) 281–293.

Cité par Sources :