On tangent cone to systems of inequalities and equations in Banach spaces under relaxed constant rank condition
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 9

Under the relaxed constant rank condition, introduced by Minchenko and Stakhovski, we prove that the linearized cone is contained in the tangent cone (Abadie condition) for sets represented as solution sets to systems of finite numbers of inequalities and equations given by continuously differentiable functions defined on Banach spaces.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021004
Classification : 47J07, 47J30, 49J27, 49K27, 90C46
Keywords: Tangent cone, relaxed constant rank condition, Abadie condition, rank theorem, Ljusternik theorem, Lagrange multipliers
@article{COCV_2021__27_1_A11_0,
     author = {Bednarczuk, E. M. and Le\'sniewski, K. W. and Rutkowski, K. E.},
     title = {On tangent cone to systems of inequalities and equations in {Banach} spaces under relaxed constant rank condition},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021004},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021004/}
}
TY  - JOUR
AU  - Bednarczuk, E. M.
AU  - Leśniewski, K. W.
AU  - Rutkowski, K. E.
TI  - On tangent cone to systems of inequalities and equations in Banach spaces under relaxed constant rank condition
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021004/
DO  - 10.1051/cocv/2021004
LA  - en
ID  - COCV_2021__27_1_A11_0
ER  - 
%0 Journal Article
%A Bednarczuk, E. M.
%A Leśniewski, K. W.
%A Rutkowski, K. E.
%T On tangent cone to systems of inequalities and equations in Banach spaces under relaxed constant rank condition
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021004/
%R 10.1051/cocv/2021004
%G en
%F COCV_2021__27_1_A11_0
Bednarczuk, E. M.; Leśniewski, K. W.; Rutkowski, K. E. On tangent cone to systems of inequalities and equations in Banach spaces under relaxed constant rank condition. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 9. doi: 10.1051/cocv/2021004

[1] J. Abadie, On the Kuhn-Tucker theorem, in Nonlinear Programming (NATO Summer School, Menton, 1964). North-Holland, Amsterdam (1967) 19–36.

[2] R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, tensor analysis, and applications. Vol. 75 of Applied Mathematical Sciences, second ed. Springer-Verlag, New York (1988).

[3] R. Andreani, R. Behling, G. Haeser and P. J. S. Silva, On second-order optimality conditions in nonlinear optimization. Optim. Methods Softw. 32 (2017) 22–38.

[4] R. Andreani, C. E. Echagüe and M. L. Schuverdt, Constant-rank condition and second-order constraint qualification. J. Optim. Theory Appl. 146 (2010) 255–266.

[5] R. Andreani, N. S. Fazzio, M. L. Schuverdt and L. D. Secchin, A sequential optimality condition related to the quasi-normality constraint qualification and its algorithmic consequences. SIAM J. Optim. 29 (2019) 743–766.

[6] R. Andreani, G. Haeser, M. L. Schuverdt and P. J. S. Silva, A relaxed constant positive linear dependence constraint qualification and applications. Math. Program. 135 (2012) 255–273.

[7] R. Andreani and P. Silva, Constant rank constraint qualifications: a geometric introduction. Pesquisa Operacional 34 (2014) 481–494.

[8] E. M. Bednarczuk, L. I. Minchenko and K. E. Rutkowski, On lipschitz-like continuity of a class of set-valued mappings. Optimization 62 (2019) 2535–2549.

[9] R. Bergmann and R. Herzog, Intrinsic formulation of KKT conditions and constraint qualifications on smooth manifolds. Preprint (2018). | arXiv

[10] J. F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems. Springer Series in Operations Research. Springer-Verlag, New York (2000).

[11] W. M. Boothby, An introduction to differentiable manifolds and Riemannian geometry. Vol. 120 of Pure and Applied Mathematics, second ed. Academic Press, Inc., Orlando, FL (1986).

[12] E. Börgens, C. Kanzow, P. Mehlitz and G. Wachsmuth, New Constraint Qualifications for Optimization Problems in Banach Spaces based on Cone Continuity Properties. Preprint (2019). | arXiv

[13] F. Deutsch, Best approximation in inner product spaces. Vol. 7 of CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer-Verlag, New York (2001).

[14] J. Gallier and J. Quaintance, Linear Algebra and Optimization with Applications to Machine Learning: Volume I: Linear Algebra for Computer Vision, Robotics, and Machine Learning. World Scientific Publishing Co Pte Ltd (2020).

[15] R. Henrion and J. V. Outrata, Calmness of constraint systems with applications. Math. Program. 104 (2005) 437–464.

[16] A. D. Ioffe and V. M. Tihomirov, Theory of extremal problems. Vol. 6 of Studies in Mathematics and its Applications. Translated from the Russian by Karol Makowski. North-Holland Publishing Co., Amsterdam-New York (1979).

[17] R. Janin, Directional derivative of the marginal function in nonlinear programming. Springer Berlin Heidelberg, Berlin, Heidelberg (1984) 110–126.

[18] A. Y. Kruger, L. Minchenko and J. V. Outrata, On relaxing the mangasarian–fromovitz constraint qualification. Positivity 18 (2014) 171–189.

[19] S. Kurcyusz, On the existence and nonexistence of lagrange multipliers in Banach spaces. J. Optim. Theory Appl. 20 (1976) 81–110.

[20] W. Li, Abadie’s constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7 (1997) 966–978.

[21] K. Maurin, Analysis. Part I. Elements, Translated from the Polish by Eugene Lepa. D. Reidel Publishing Co., Dordrecht-Boston, Mass.; PWN—Polish Scientific Publishers; Warsaw (1976).

[22] L. Minchenko, Note on Mangasarian–Fromovitz-like constraint qualifications. J. Optim. Theory Appl. 182 (2019) 1199–1204.

[23] L. Minchenko and S. Stakhovski, On relaxed constant rank regularity condition in mathematical programming. Optimization 60 (2011) 429–440.

[24] R. Narasimhan, Lectures on topics in analysis, Notes by M. S. Rajwade. Tata Institute of Fundamental Research Lectures on Mathematics, No. 34, Tata Institute of Fundamental Research, Bombay (1965).

[25] J.-P. Penot, On the existence of lagrange multipliers in nonlinear programming in banach spaces, in Optimization and Optimal Control, edited by A. Auslender, W. Oettli, and J. Stoer. Springer Berlin Heidelberg (1981) 89–104.

[26] S. M. Robinson, Stability theory for systems of inequalities. II. Differentiable nonlinear systems. SIAM J. Numer. Anal. 13 (1976) 497–513.

[27] M. Solodov, Constraint Qualifications. Wiley Encyclopedia of Operations Research and Management Science (2011).

[28] L. Székelyhidi, Ordinary and partial differential equations for the beginner. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2016).

[29] V. A. Zorich, Mathematical analysis. I, Universitext, second ed. Translated from the 6th corrected Russian edition, Part I, 2012 by Roger Cooke, With Appendices A–F and new problems translated by Octavio Paniagua T. Springer-Verlag, Berlin (2015).

[30] J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 (1979) 49–62.

Cité par Sources :