We propose a model for finding one-dimensional structure in a given measure. Our approach is based on minimizing an objective functional which combines the average-distance functional to measure the quality of the approximation and penalizes the curvature, similarly to the elastica functional. Introducing the curvature penalization overcomes some of the shortcomings of the average-distance functional, in particular the lack of regularity of minimizers. We establish existence, uniqueness and regularity of minimizers of the proposed functional. In particular we establish C1,1 estimates on the minimizers.
Accepté le :
Première publication :
Publié le :
Keywords: Average-distance problem, elastica functional, Willmore energy, curve fitting
@article{COCV_2021__27_1_A10_0,
author = {Lu, Xin Yang and Slep\v{c}ev, Dejan},
title = {Average-distance problem with curvature penalization for data parameterization: regularity of minimizers},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2021},
publisher = {EDP-Sciences},
volume = {27},
doi = {10.1051/cocv/2021002},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2021002/}
}
TY - JOUR AU - Lu, Xin Yang AU - Slepčev, Dejan TI - Average-distance problem with curvature penalization for data parameterization: regularity of minimizers JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2021 VL - 27 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2021002/ DO - 10.1051/cocv/2021002 LA - en ID - COCV_2021__27_1_A10_0 ER -
%0 Journal Article %A Lu, Xin Yang %A Slepčev, Dejan %T Average-distance problem with curvature penalization for data parameterization: regularity of minimizers %J ESAIM: Control, Optimisation and Calculus of Variations %D 2021 %V 27 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2021002/ %R 10.1051/cocv/2021002 %G en %F COCV_2021__27_1_A10_0
Lu, Xin Yang; Slepčev, Dejan. Average-distance problem with curvature penalization for data parameterization: regularity of minimizers. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 8. doi: 10.1051/cocv/2021002
[1] , Curvatura laminae elasticae. Ejus identitas cum curvatura lintei a pondere inclusi fluidi expansi. Radii circulorum osculantium in terminis simplicissimis exhibiti; una cum novis quibusdarn theorematis huc pertinentibus. Acta Erudirorum (1694).
[2] and , Parameter selection for principal curves. IEEE Trans. Inf. Theory 58 (2011) 1924–1939.
[3] , and , Regularization of discrete contour by Willmore energy. J. Math. Imag. Vision 40 (2011) 214–229.
[4] , and , Stationary configurations for the average distance functional and related problems. Control Cybernet. 38 (2009) 1107–1130.
[5] , and , Optimal transportation problems with free dirichlet regions, in Variational methods for discontinuous structures. Vol. 51 of Progr. Nonlinear Differential Equations Appl. Birkhäuser, Basel (2002) 41–65.
[6] , , and , Optimal urban networks via mass transportation. Vol. 1961 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2009).
[7] , and , Optimal pricing policies for public transportation networks. SIAM J. Optim. 16 (2006) 826–853.
[8] and , A model for the optimal planning of an urban area. SIAM J. Math. Anal. 37 (2005) 514–530 (electronic).
[9] and , A mass transportation model for the optimal planning of an urban region. SIAM Rev. 51 (2009) 593–610.
[10] and , Optimal transportation networks as free dirichlet regions for the Monge-Kantorovich problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003) 631–678.
[11] and , Minimization problems for average distance functionals, in topics from the mathematical heritage of E. de Giorgi. Vol. 14 of Quad. Mat., Dept. Math. Seconda Univ. Napoli, Caserta. Cal. Var. Geom. Measure Theor. 14 (2004) 47–83.
[12] A practical guide to splines. Vol. 27 of Applied Mathematical Sciences. Springer-Verlag. New York, revised ed. (2001).
[13] and , On principal curves with a length constraint. Ann. Inst. Henri Poincaré Probab. Statist. 56 (2020) 2108–2140.
[14] , Another look at principal curves and surfaces. J. Multivariate Anal. 77 (2001) 84–116.
[15] , and , A phase field model for the optimization of the Willmore energy in the class of connected surfaces. SIAM J. Math. Anal. 46 (2014) 1610–1632.
[16] , , and , A phase field formulation of the Willmore problem. Nonlinearity 18 (2005) 1249–1267.
[17] and , Geometric properties of principal curves in the plane, in Robust statistics, data analysis, and computerintensive methods (Schloss Thurnau, 1994). Vol. 109 of Lecture Notes in Statist. Springer, New York (1996) 135–152.
[18] , Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti. Lausannæ, Genevæ, apud Marcum-Michaelem Bousquet & socios (1744).
[19] , and , Dimensionality reduction and principal surfaces via kernel map manifolds, in 2009 IEEE 12th International Conference on Computer Vision. IEEE (2009) 529–536.
[20] and , Regularization-free principal curve estimation. J. Machine Learning Res. 14 (2013) 1285–1302.
[21] , Snap buckling, writhing and loop formation in twisted rods. Ph.D. thesis, University College London (2003).
[22] and , Principal curves. J. Am. Statist. Assoc. 84 (1989) 502–516.
[23] , , and , Learning and design of principal curves. IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000) 281–297.
[24] and , Multiple penalized principal curves: analysis and computation. J. Math. Imaging Vision 59 (2017) 234–256.
[25] , About the regularity of average distance minimizers in ℝ2. J. Convex Anal. 18 (2011) 949–981.
[26] , The elastica: a mathematical history (2008).
[27] , Example of minimizer of the average-distance problem with non closed set of corners. Rendiconti del Seminario Matematico della Università di Padova 137 (2017) 19–55.
[28] and , Properties of minimizers of average-distance problem via discrete approximation of measures. SIAM J. Math. Anal. 45 (2013) 3114–3131.
[29] and , Average-distance problem for parameterized curves. ESAIM: COCV 22 (2016) 404–416.
[30] and , Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47 (2003) 1–25.
[31] and , Locally defined principal curves and surfaces. J. Mach. Learn. Res. 12 (2011) 1249–1286.
[32] and , Qualitative properties of maximum distance minimizers and average distance minimizers in ℝ$$. J. Math. Sci. (N. Y.) 122 (2004) 3290–3309.
[33] and , The lazy travelling salesman problem in ℝ2. ESAIM: COCV 13 (2007) 538–552.
[34] , Counterexample to regularity in average-distance problem. Ann. Inst. Henri Poincaré Anal. Non Linéaire 31 (2014) 169–184.
[35] , , and , Regularized principal manifolds. J. Mach. Learn. Res. 1 (2001) 179–209.
[36] , Principal curves revisited. Stat. Comput. 2 (1992) 182–190.
Cité par Sources :





