Average-distance problem with curvature penalization for data parameterization: regularity of minimizers
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 8

We propose a model for finding one-dimensional structure in a given measure. Our approach is based on minimizing an objective functional which combines the average-distance functional to measure the quality of the approximation and penalizes the curvature, similarly to the elastica functional. Introducing the curvature penalization overcomes some of the shortcomings of the average-distance functional, in particular the lack of regularity of minimizers. We establish existence, uniqueness and regularity of minimizers of the proposed functional. In particular we establish C1,1 estimates on the minimizers.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2021002
Classification : 49Q20, 49Q10, 35B65
Keywords: Average-distance problem, elastica functional, Willmore energy, curve fitting
@article{COCV_2021__27_1_A10_0,
     author = {Lu, Xin Yang and Slep\v{c}ev, Dejan},
     title = {Average-distance problem with curvature penalization for data parameterization: regularity of minimizers},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2021002},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2021002/}
}
TY  - JOUR
AU  - Lu, Xin Yang
AU  - Slepčev, Dejan
TI  - Average-distance problem with curvature penalization for data parameterization: regularity of minimizers
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2021002/
DO  - 10.1051/cocv/2021002
LA  - en
ID  - COCV_2021__27_1_A10_0
ER  - 
%0 Journal Article
%A Lu, Xin Yang
%A Slepčev, Dejan
%T Average-distance problem with curvature penalization for data parameterization: regularity of minimizers
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2021002/
%R 10.1051/cocv/2021002
%G en
%F COCV_2021__27_1_A10_0
Lu, Xin Yang; Slepčev, Dejan. Average-distance problem with curvature penalization for data parameterization: regularity of minimizers. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 8. doi: 10.1051/cocv/2021002

[1] J. Bertoulli, Curvatura laminae elasticae. Ejus identitas cum curvatura lintei a pondere inclusi fluidi expansi. Radii circulorum osculantium in terminis simplicissimis exhibiti; una cum novis quibusdarn theorematis huc pertinentibus. Acta Erudirorum (1694).

[2] G. Biau and A. Fischer, Parameter selection for principal curves. IEEE Trans. Inf. Theory 58 (2011) 1924–1939.

[3] E. Bretin, J.-O. Lachaud and É. Oudet, Regularization of discrete contour by Willmore energy. J. Math. Imag. Vision 40 (2011) 214–229.

[4] G. Buttazzo, E. Mainini and E. Stepanov, Stationary configurations for the average distance functional and related problems. Control Cybernet. 38 (2009) 1107–1130.

[5] G. Buttazzo, E. Oudet and E. Stepanov, Optimal transportation problems with free dirichlet regions, in Variational methods for discontinuous structures. Vol. 51 of Progr. Nonlinear Differential Equations Appl. Birkhäuser, Basel (2002) 41–65.

[6] G. Buttazzo, A. Pratelli, S. Solimini and E. Stepanov, Optimal urban networks via mass transportation. Vol. 1961 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2009).

[7] G. Buttazzo, A. Pratelli and E. Stepanov, Optimal pricing policies for public transportation networks. SIAM J. Optim. 16 (2006) 826–853.

[8] G. Buttazzo and F. Santambrogio, A model for the optimal planning of an urban area. SIAM J. Math. Anal. 37 (2005) 514–530 (electronic).

[9] G. Buttazzo and F. Santambrogio, A mass transportation model for the optimal planning of an urban region. SIAM Rev. 51 (2009) 593–610.

[10] G. Buttazzo and E. Stepanov, Optimal transportation networks as free dirichlet regions for the Monge-Kantorovich problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003) 631–678.

[11] G. Buttazzo and E. Stepanov, Minimization problems for average distance functionals, in topics from the mathematical heritage of E. de Giorgi. Vol. 14 of Quad. Mat., Dept. Math. Seconda Univ. Napoli, Caserta. Cal. Var. Geom. Measure Theor. 14 (2004) 47–83.

[12] C. De Boor A practical guide to splines. Vol. 27 of Applied Mathematical Sciences. Springer-Verlag. New York, revised ed. (2001).

[13] S. Delattre and A. Fischer, On principal curves with a length constraint. Ann. Inst. Henri Poincaré Probab. Statist. 56 (2020) 2108–2140.

[14] P. Delicado, Another look at principal curves and surfaces. J. Multivariate Anal. 77 (2001) 84–116.

[15] P. W. Dondl, L. Mugnai and M. Röger, A phase field model for the optimization of the Willmore energy in the class of connected surfaces. SIAM J. Math. Anal. 46 (2014) 1610–1632.

[16] Q. Du, C. Liu, R. Ryham and X. Wang, A phase field formulation of the Willmore problem. Nonlinearity 18 (2005) 1249–1267.

[17] T. Duchamp and W. Stuetzle, Geometric properties of principal curves in the plane, in Robust statistics, data analysis, and computerintensive methods (Schloss Thurnau, 1994). Vol. 109 of Lecture Notes in Statist. Springer, New York (1996) 135–152.

[18] L. Euler, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti. Lausannæ, Genevæ, apud Marcum-Michaelem Bousquet & socios (1744).

[19] S. Gerber, T. Tasdizen and R. Whitaker, Dimensionality reduction and principal surfaces via kernel map manifolds, in 2009 IEEE 12th International Conference on Computer Vision. IEEE (2009) 529–536.

[20] S. Gerber and R. Whitaker, Regularization-free principal curve estimation. J. Machine Learning Res. 14 (2013) 1285–1302.

[21] V. G. A. Goss, Snap buckling, writhing and loop formation in twisted rods. Ph.D. thesis, University College London (2003).

[22] T. Hastie and W. Stuetzle, Principal curves. J. Am. Statist. Assoc. 84 (1989) 502–516.

[23] B. Kégl, A. Krzyzak, T. Linder and K. Zeger, Learning and design of principal curves. IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000) 281–297.

[24] S. Kirov and D. Slepčev, Multiple penalized principal curves: analysis and computation. J. Math. Imaging Vision 59 (2017) 234–256.

[25] A. Lemenant, About the regularity of average distance minimizers in ℝ2. J. Convex Anal. 18 (2011) 949–981.

[26] R. Levien, The elastica: a mathematical history (2008).

[27] X. Y. Lu, Example of minimizer of the average-distance problem with non closed set of corners. Rendiconti del Seminario Matematico della Università di Padova 137 (2017) 19–55.

[28] X. Y. Lu and D. Slepčev, Properties of minimizers of average-distance problem via discrete approximation of measures. SIAM J. Math. Anal. 45 (2013) 3114–3131.

[29] X. Y. Lu and D. Slepčev, Average-distance problem for parameterized curves. ESAIM: COCV 22 (2016) 404–416.

[30] C. Mantegazza and A. C. Mennucci, Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47 (2003) 1–25.

[31] U. Ozertem and D. Erdogmus, Locally defined principal curves and surfaces. J. Mach. Learn. Res. 12 (2011) 1249–1286.

[32] E. Paolini and E. Stepanov, Qualitative properties of maximum distance minimizers and average distance minimizers in ℝ$$. J. Math. Sci. (N. Y.) 122 (2004) 3290–3309.

[33] P. Polak and G. Wolansky, The lazy travelling salesman problem in ℝ2. ESAIM: COCV 13 (2007) 538–552.

[34] D. Slepčev, Counterexample to regularity in average-distance problem. Ann. Inst. Henri Poincaré Anal. Non Linéaire 31 (2014) 169–184.

[35] A. J. Smola, S. Mika, B. Schölkopf and R. C. Williamson, Regularized principal manifolds. J. Mach. Learn. Res. 1 (2001) 179–209.

[36] R. Tibshirani, Principal curves revisited. Stat. Comput. 2 (1992) 182–190.

Cité par Sources :