Linear hyperbolic systems on networks: well-posedness and qualitative properties
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 7

We study hyperbolic systems of one-dimensional partial differential equations under general, possibly non-local boundary conditions. A large class of evolution equations, either on individual 1-dimensional intervals or on general networks, can be reformulated in our rather flexible formalism, which generalizes the classical technique of first-order reduction. We study forward and backward well-posedness; furthermore, we provide necessary and sufficient conditions on both the boundary conditions and the coefficients arising in the first-order reduction for a given subset of the relevant ambient space to be invariant under the flow that governs the system. Several examples are studied.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2020091
Classification : 47D06, 35L40, 35R02, 81Q35
Keywords: Hyperbolic systems, operator semigroups, PDEs on networks, invariance properties, Saint-Venant system, second sound
@article{COCV_2021__27_1_A9_0,
     author = {Kramar Fijav\v{z}, Marjeta and Mugnolo, Delio and Nicaise, Serge},
     title = {Linear hyperbolic systems on networks: well-posedness and qualitative properties},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2020091},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2020091/}
}
TY  - JOUR
AU  - Kramar Fijavž, Marjeta
AU  - Mugnolo, Delio
AU  - Nicaise, Serge
TI  - Linear hyperbolic systems on networks: well-posedness and qualitative properties
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2020091/
DO  - 10.1051/cocv/2020091
LA  - en
ID  - COCV_2021__27_1_A9_0
ER  - 
%0 Journal Article
%A Kramar Fijavž, Marjeta
%A Mugnolo, Delio
%A Nicaise, Serge
%T Linear hyperbolic systems on networks: well-posedness and qualitative properties
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2020091/
%R 10.1051/cocv/2020091
%G en
%F COCV_2021__27_1_A9_0
Kramar Fijavž, Marjeta; Mugnolo, Delio; Nicaise, Serge. Linear hyperbolic systems on networks: well-posedness and qualitative properties. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 7. doi: 10.1051/cocv/2020091

[1] F. Ali Mehmeti Regular solutions of transmission and interaction problems for wave equations. Math. Meth. Appl. Sci. 11 (1989) 665–685.

[2] F. Ali Mehmeti Nonlinear Waves in Networks, Mathematical Research, vol. 80. Akademie Verlag, Berlin (1994).

[3] K. Ammari and M. Mehrenberger, Study of the nodal feedback stabilization of a string–beams network. J. Appl. Math. Comput. 36 (2011) 441–458.

[4] K. Ammari and S. Nicaise, Stabilization of elastic systems by collocated feedback. Vol. 2124 of Lecture Notes in Mathematics. Springer, Cham (2015).

[5] K. Ammari, D. Mercier, V. Régnier and J. Valein, Spectral analysis and stabilization of a chain of serially connected Euler-Bernoulli beams and strings. Comm. Pure Appl. Anal. 11 (2012) 785–807.

[6] G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems. Vol. 88 of Progress in Nonlinear Differential Equations. Birkhäuser, Basel (2016).

[7] A. Bátkai, M. Kramar Fijavž and A. Rhandi, Positive Operator Semigroups. Vol. 257 of Operator Theory: Advances and Applications. Birkhäuser, Cham (2017).

[8] S. Benzoni-Gavage and D. Serre, Multidimensional Hyperbolic Partial Differential Equations – First-order Systems and Applications. Clarendon Press, Oxford (2007).

[9] J. Bolte and J. Harrison, Spectral statistics for the Dirac operator on graphs, J. Phys. A 36 (2003) 2747–2769.

[10] J. Bolte and H.-M. Stiepan, The Selberg trace formula for Dirac operators. J. Math. Phys. 47 (2007) 112104.

[11] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347 (2010) 455–478.

[12] A. Bressan, S. Čanić, M. Garavello, M. Herty and B. Piccoli, Flows on networks: recent results and perspectives. EMS Surv. Math. Sci. 1 (2014) 47–111.

[13] A. Bressan, S. Čanić, M. Garavello, M. Herty and B. Piccoli, Flows on networks: recent results and perspectives. EMS Surv. Math. Sci. 1 (2014) 47–111.

[14] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer-Verlag, Berlin (2010).

[15] S. Cardanobile and D. Mugnolo, Parabolic systems with coupled boundary conditions. J. Differ. Equ. 247 (2009) 1229–1248.

[16] R. Carlson, Inverse eigenvalue problems on directed graphs. Trans. Amer. Math. Soc. 351 (1999) 4069–4088.

[17] R. Carlson, Nonclassical Sturm–Liouville problems and Schrödinger operators on radial trees. Electr. J. Differ. Equ. 71 (2000) 1–24.

[18] R. Carlson, Spectral theory for nonconservative transmission line networks. Netw. Heterog. Media 6 (2011) 257–277.

[19] G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain. J. Math. Pures Appl. 58 (1979) 249–273.

[20] R. Dáger and E. Zuazua, Wave propagation, observation and control in 1-d flexible multi-structures. Vol. 50 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin (2006).

[21] B. Dorn, Semigroups for flows in infinite networks. Semigroup Forum 76 (2008) 341–356.

[22] B. Dorn, M. Kramar Fijavž, R. Nagel and A. Radl, The semigroup approach to transport processes in networks. Physica D 239 (2010) 1416–1421.

[23] S. Endres and F. Steiner, The Berry–Keating operator on L2(ℝ$$) and on compact quantum graphs with general self-adjoint realizations. J. Phys. A 43 (2010) 095204.

[24] K.-J. Engel, Generator property and stability for generalized difference operators. J. Evol. Equ. 13 (2013) 311–334.

[25] K.-J. Engel and M. Kramar Fijavž Exact and positive controllability of boundary control systems. Netw. Heterog. Media 12 (2017) 319–337.

[26] K.-J. Engel, M. Kramar Fijavž, R. Nagel and E. Sikolya, Vertex control of flows in networks. Netw. Heterog. Media 3 (2008) 709–722.

[27] K.-J. Engel, M. Kramar Fijavž, B. Klöss, R. Nagel and E. Sikolya, Maximal controllability for boundary control problems. Appl. Math. Optim. 62 (2010) 205–227.

[28] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Vol. 194 of Graduate Texts in Mathematics. Springer-Verlag, New York (2000).

[29] L. Evans, Partial differential Equations – second edition. Vol. 19 of Graduate Studies in Mathematics. Amer. Math. Soc., Providence, RI (2010).

[30] P. Exner, Momentum operators on graphs. In H. Holden, B. Simon, and G. Teschl, editors, Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy’s 60th Birthday. Vol. 87 of Proc. Symp. Pure Math. Amer. Math. Soc., Providence, RI (2013) 105–118.

[31] S. Huberman, R. Duncan, K. Chen, B. Song, V. Chiloyan, Z. Ding, A. Maznev, G. Chen and K. Nelson, Observation of second sound in graphite at temperatures above 100 k. Science 364 (2019) 375–379.

[32] A. Hussein and D. Mugnolo, Quantum graphs with mixed dynamics: the transport/diffusion case. J. Phys. A 46 (2013) 235202.

[33] S. Imperiale and P. Joly, Mathematical modeling of electromagnetic wave propagation in heterogeneous lossy coaxial cables with variable cross section. Appl. Num. Math. 79 (2014) 42–61.

[34] B. Jacob, K. Morris and H. Zwart, C0-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain. J. Evol. Equ. 15 (2015) 493–502.

[35] B. Jacoband H. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces. Vol. 223 of Oper. Theory Adv. Appl. Birkhäuser, Basel (2012).

[36] P. Jorgensen, S. Pedersen and F. Tiang, Momentum operators in two intervals: Spectra and phase transition. Compl. Anal. Oper. Theory 7 (2013) 1735–1773.

[37] B. Klöss, Difference operators as semigroup generators. Semigroup Forum 81 (2010) 461–482.

[38] B. Klöss, The flow approach for waves in networks. Oper. Matrices 6 (2012) 107–128.

[39] V. Kostrykin and R. Schrader, Kirchhoff’s rule for quantum wires. J. Phys. A 32 (1999) 595–630.

[40] M. Kramar Fijavž and A. Puchalska, Semigroups for dynamical processes on metric graphs. Phil. Trans. R. Soc. A 378 (2020) 20190619.

[41] M. Kramar Fijavž, D. Mugnolo and S. Nicaise, Hyperbolic systems with dynamic boundary conditions. Inpreparation (2020).

[42] M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks. Math. Z. 249 (2005) 139–162.

[43] P. Kuchment, Graph models of wave propagation in thin structures. Waves Random Media 12 (2002) 1–24.

[44] P. Kurasov, D. Mugnolo and V. Wolf, Analytic solutions for stochastic hybrid models of gene regulatory networks. Preprint (2021). | arXiv

[45] J. Lagnese, G. Leugering, and E. Schmidt, Modeling, Analysis, and Control of dynamic Elastic Multi-Link Structures, Systems and Control: Foundations and Applications. Birkhäuser, Basel (1994).

[46] T. Y. Lam, Introduction to quadratic forms over fields. Vol. 67 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2005).

[47] P. Lax and R. Phillips, Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math. 13 (1960) 427–455.

[48] G. Leugering and E. Schmidt, On the control of networks of vibrating strings and beams. In IEEE Conference on Decision and Control, IEEE, Providence, RI (1989) 2287–2290.

[49] H. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15 (1967) 299–309.

[50] G. Lumer, Connecting of local operators and evolution equations on networks. In Potential Theory (Proc. Copenhagen 1979), edited by F. Hirsch. Springer-Verlag, Berlin (1980) 230–243.

[51] A. Maffucci and G. Miano, A unified approach for the analysis of networks composed of transmission lines and lumped circuits. In Scientific computing in electrical engineering. Vol. 9 of Mathematics in industry. Springer-Verlag, Berlin (2006) 3–11.

[52] T. Mátrai and E. Sikolya, Asymptotic behavior of flows in networks. Forum Math. 19 (2007) 429–461.

[53] J. Milnor and D. Husemoller, Symmetric bilinear forms. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73. Springer-Verlag, New York-Heidelberg (1973).

[54] D. Mugnolo, Semigroup Methods for Evolution Equations on Networks. Understanding Complex Systems. Springer-Verlag, Berlin (2014).

[55] S. Nicaise, Polygonal Interface Problems. Vol. 39 of Methoden und Verfahren der mathematischen Physik. Peter Lang GmbH, Europäischer Verlag der Wissenschaften, Frankfurt/M (1993).

[56] S. Nicaise, Control and stabilization of 2 × 2 hyperbolic systems on graphs. Math. Control Relat. Fields 7 (2017) 53–72.

[57] S. Nicaise and J. Valein, Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Networks Het. Media 3 (2007) 425–479.

[58] E. Ouhabaz, Analysis of Heat Equations on domains. Vol. 30 of Lond. Math. Soc. Monograph Series. Princeton Univ. Press, Princeton, NJ (2005).

[59] B. Pavlov and M. D. Faddeev, Model of free electrons and the scattering problem. Theor. Math. Phys. 55 (1983) 485–492.

[60] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Vol. 44 of Appl. Math. Sci. Springer-Verlag, New York (1983).

[61] J. Prüss, On the spectrum of C0-semigroups. Trans. Am. Math. Soc. 284 (1984) 847–857.

[62] R. Racke, Thermoelasticity with second sound – exponential stability in linear and nonlinear 1D. Math. Methods Appl. Sci. 25 (2002) 409–441.

[63] J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity. Trans. Am. Math. Soc. 291 (1985) 167–187.

[64] J. Rauch, Hyperbolic partial differential equations and geometric optics. Vol. 133 of Graduate Studies in Mathematics. Amer. Math. Soc., Providence, RI (2012).

[65] C. Schubert, C. Seifert, J. Voigt and M. Waurick, Boundary systems and (skew-) self-adjoint operators on infinite metric graphs. Math. Nachr. 288 (2015) 1776–1785.

[66] B. Thaller, The Dirac Equation. Springer-Verlag, New York (1992).

[67] M. Waurick and S.-A. Wegner, Dissipative extensions and port-hamiltonian operators onnetwork (2019).

[68] T. Yokota, Invariance of closed convex sets under semigroups of nonlinear operators in complex Hilbert spaces. SUT J. Math. 37 (2001) 91–104.

[69] H. Zwart, Y. Le Gorrec, B. Maschke and J. Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: COCV 16 (2010) 1077–1093.

Cité par Sources :

The work of M.K.F. was partially supported by the Slovenian Research Agency, Grant No. P1-0222, and the work of D.M. by the Deutsche Forschungsgemeinschaft (Grant 397230547). This article is based upon work from COST Action 18232 MAT-DYN-NET, supported by COST (European Cooperation in Science and Technology), www.cost.eu.