Sparse optimal control for a semilinear heat equation with mixed control-state constraints – regularity of Lagrange multipliers
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 2

An optimal control problem for a semilinear heat equation with distributed control is discussed, where two-sided pointwise box constraints on the control and two-sided pointwise mixed control-state constraints are given. The objective functional is the sum of a standard quadratic tracking type part and a multiple of the L1-norm of the control that accounts for sparsity. Under a certain structural condition on almost active sets of the optimal solution, the existence of integrable Lagrange multipliers is proved for all inequality constraints. For this purpose, a theorem by Yosida and Hewitt is used. It is shown that the structural condition is fulfilled for all sufficiently large sparsity parameters. The sparsity of the optimal control is investigated. Eventually, higher smoothness of Lagrange multipliers is shown up to Hölder regularity.

DOI : 10.1051/cocv/2020084
Classification : 49K20, 49N10, 90C05, 90C46
Keywords: Semilinear heat equation, optimal control, Sparse control, mixed control-state constraints, regular Lagrange multipliers
@article{COCV_2021__27_1_A4_0,
     author = {Casas, Eduardo and Tr\"oltzsch, Fredi},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {Sparse optimal control for a semilinear heat equation with mixed control-state constraints {\textendash} regularity of {Lagrange} multipliers},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2020084},
     mrnumber = {4201972},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2020084/}
}
TY  - JOUR
AU  - Casas, Eduardo
AU  - Tröltzsch, Fredi
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - Sparse optimal control for a semilinear heat equation with mixed control-state constraints – regularity of Lagrange multipliers
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2020084/
DO  - 10.1051/cocv/2020084
LA  - en
ID  - COCV_2021__27_1_A4_0
ER  - 
%0 Journal Article
%A Casas, Eduardo
%A Tröltzsch, Fredi
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T Sparse optimal control for a semilinear heat equation with mixed control-state constraints – regularity of Lagrange multipliers
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2020084/
%R 10.1051/cocv/2020084
%G en
%F COCV_2021__27_1_A4_0
Casas, Eduardo; Tröltzsch, Fredi. Sparse optimal control for a semilinear heat equation with mixed control-state constraints – regularity of Lagrange multipliers. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 2. doi: 10.1051/cocv/2020084

[1] E. Casas, Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297–1327. | MR | Zbl | DOI

[2] E. Casas, A review on sparse solutions in optimal control of partial differential equations. SEMA J. 74 (2017) 319–344. | MR | DOI

[3] E. Casas, The influence of the Tikhonov term in optimal control of partial differential equations. In Vol. 17 of SEMA SIMAI Springer Series (2018). | MR | DOI

[4] E. Casas, C. Clason and K. Kunisch, Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50 (2012) 1735–1752. | MR | Zbl | DOI

[5] E. Casas, C. Clason and K. Kunisch, Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 51 (2013) 28–63. | MR | Zbl | DOI

[6] E. Casas, R. Herzog and G. Wachsmuth, Approximation of sparse controls in semilinear equations by piecewise linear functions. Numer. Math. 122 (2012) 645–669. | MR | Zbl | DOI

[7] E. Casas, R. Herzog and G. Wachsmuth, Optimality conditions and error analysis of semilinear elliptic control problems with L 1 cost functional. SIAM J. Optim. 22 (2012) 795–820. | MR | Zbl | DOI

[8] E. Casas, R. Herzog and G. Wachsmuth, Analysis of spatio-temporally sparse optimal control problems of semilinear parabolic equations. ESAIM: COCV 23 (2017) 263–295. | MR | Zbl | Numdam

[9] E. Casas and K. Kunisch, Optimal control of semilinear elliptic equations in measure spaces. SIAM J. Control Optim. 52 (2014) 339–364. | MR | Zbl | DOI

[10] E. Casas and K. Kunisch, Parabolic control problems in space-time measure spaces. ESAIM: COCV 22 (2016) 355–370. | MR | Zbl | Numdam

[11] E. Casas and F. Tröltzsch, Second-order and stability analysis for state-constrained elliptic optimal control problems with sparse controls. SIAM J. Control Optim. 52 (2014) 1010–1033. | MR | Zbl | DOI

[12] E. Casas and F. Tröltzsch, Optimal sparse boundary control for a semilinear parabolic equation with mixed control-state constraints. Control Cybern. 48 (2019) 89–124. | MR

[13] E. Casas and F. Tröltzsch, Sparse optimal control for the heat equation with mixed control-state constraints. Math. Control Relat. Fields 10 (2020) 471–491. | MR | DOI

[14] E. Casas, B. Vexler and E. Zuazua, Sparse initial data identification for parabolic PDE and its finite element approximations. Math. Control Relat. Fields 5 (2015) 377–399. | MR | DOI

[15] E. Casasand E. Zuazua, Spike controls for elliptic and parabolic PDE. Systems Control Lett. 62 (2013) 311–318. | MR | Zbl | DOI

[16] C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM: COCV 17 (2011) 243–266. | MR | Zbl | Numdam

[17] C. Clason and K. Kunisch, A measure space approach to optimal source placement. Comput. Optim. Appl. 53 (2012) 155–171. | MR | Zbl | DOI

[18] C. Clason and A. Schiela, Optimal control of elliptic equations with positive measures. ESAIM: COCV 23 (2017) 217–240. | MR | Zbl | Numdam

[19] E. Di Benedetto On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients. Ann. Scuola Sup. Pisa, Ser. I 13 (1986) 487–535. | MR | Zbl | Numdam

[20] A. Dmitruk, Maximum principle for the general optimal control problem with phase and regular mixed constraints. Comput. Math. Model. 4 (1993) 364–377. | MR | DOI

[21] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin Heidelberg (1983). | MR | Zbl

[22] R. Herzog, G. Stadler and G. Wachsmuth, Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50 (2012) 943–963. | MR | Zbl | DOI

[23] A. D. Ioffe and V. M. Tihomirov, Theory of extremal problems. North-Holland Publishing Co., Amsterdam (1979). | MR | Zbl

[24] K. Kunisch, K. Pieper and B. Vexler, Measure valued directional sparsity for parabolic optimal control problems. SIAM J. Control Optim. 52 (2014) 3078–3108. | MR | Zbl | DOI

[25] C. Meyer and F. Tröltzsch, On an elliptic optimal control problem with pointwise mixed control-state constraints, In Recent Advances in Optimization, edited by A. Seeger. Proceedings of the 12th French-German-Spanish Conference on Optimization held in Avignon, September 20-24, 2004, volume 563 of Lecture Notes in Economics and Mathematical Systems. Springer-Verlag (2006). | MR | Zbl

[26] K. Pieper and B. Vexler, A priori error analysis for discretization of sparse elliptic optimal control problems in measure space. SIAM J. Control Optim. 51 (2013) 2788–2808. | MR | Zbl | DOI

[27] J.-P. Raymond and F. Tröltzsch, Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discr. Continu. Dyn. Syst. 6 (2000) 431–450. | MR | Zbl | DOI

[28] A. Rösch and F. Tröltzsch, On regularity of solutions and Lagrange multipliers of optimal control problems for semilinear equations with mixed pointwise control-state constraints. SIAM J. Control Optim. 46 (2007) 1098–1115. | MR | Zbl | DOI

[29] R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, volume 49 of Math. Surv. and Monogr. American Mathematical Society, Providence, RI (1997). | MR | Zbl

[30] G. Stadler, Elliptic optimal control problems with L1-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44 (2009) 159–181. | MR | Zbl | DOI

[31] F. Tröltzsch, A minimum principle and a generalized bang-bang-principle for a distributed optimal control problem with constraints on the control and the state. ZAMM 59 (1979) 737–739. | MR | Zbl | DOI

[32] F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, in Vol. 112. American Math. Society, Providence (2010). | MR | Zbl

[33] F. Tröltzsch and D. Wachsmuth, On the switching behavior of sparse optimal controls for the one-dimensional heat equation. Math. Control Related Fields (MCRF) 8 (2018) 135–153. | MR | DOI

[34] G. Wachsmuth and D. Wachsmuth, Convergence and regularization results for optimal control problems with sparsity functional. ESAIM: COCV 17 (2011) 858–886. | MR | Zbl | Numdam

[35] K. Yosida and E. Hewitt, Finitely additive measures. Trans. Am. Math. Soc. 72 (1952) 46–66. | MR | Zbl | DOI

[36] J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 (1979) 49–62. | MR | Zbl | DOI

Cité par Sources :

The first author was partially supported by Spanish Ministerio de Economía, Industria y Competitividad under research project MTM2017-83185-P.

Dedicated to Prof. Dr. Enrique Zuazua on the occasion of his 60th birthday.