Symmetry results for variational energies on convex polygons
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 3

We prove that, in the class of convex polygons with a given number of sides, the regular n-gon is optimal for some shape optimization problems involving the torsional rigidity, the principal frequency of the Laplacian, or the logarithmic capacity.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2020083
Classification : 49Q10, 35A15, 52B60, 52A40
Keywords: Shape optimization, polygons, Polya’s conjecture, eigenvalues, torsional rigidity
@article{COCV_2021__27_1_A5_0,
     author = {Bucur, Dorin and Fragal\`a, Ilaria},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {Symmetry results for variational energies on convex polygons},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2020083},
     mrnumber = {4201974},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2020083/}
}
TY  - JOUR
AU  - Bucur, Dorin
AU  - Fragalà, Ilaria
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinski, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - Symmetry results for variational energies on convex polygons
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2020083/
DO  - 10.1051/cocv/2020083
LA  - en
ID  - COCV_2021__27_1_A5_0
ER  - 
%0 Journal Article
%A Bucur, Dorin
%A Fragalà, Ilaria
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinski, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T Symmetry results for variational energies on convex polygons
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2020083/
%R 10.1051/cocv/2020083
%G en
%F COCV_2021__27_1_A5_0
Bucur, Dorin; Fragalà, Ilaria. Symmetry results for variational energies on convex polygons. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 3. doi: 10.1051/cocv/2020083

[1] C. Borell, Hitting probabilities of killed Brownian motion: a study on geometric regularity. Ann. Sci. École Norm. Sup. 17 (1984) 451–467. | MR | Numdam | Zbl | DOI

[2] C. Borell, Greenian potentials and concavity. Math. Ann. 272 (1985) 155–160. | MR | Zbl | DOI

[3] H. J. Brascamp and E. H. Lieb, On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22 (1976) 366–389. | MR | Zbl | DOI

[4] D. Bucur and I. Fragalà, A Faber–Krahn inequality for the Cheeger constant of N-gons. J. Geom. Anal. 26 (2016) 88–117. | MR | DOI

[5] D. Bucur and I. Fragalà, Proof of the honeycomb asymptotics for optimal Cheeger clusters. Adv. Math. 350 (2019) 97–129. | MR | DOI

[6] D. Bucur, I. Fragalà and J. Lamboley, Optimal convex shapes for concave functionals. ESAIM: COCV 18 (2012) 693–711. | MR | Numdam | Zbl

[7] D. Bucur and M. Nahon, Stability and instability issues of the Weinstock inequality. Preprint arxiv (2020). | arXiv | MR

[8] A. Colesanti, Brunn–Minkowski inequalities for variational functionals and related problems. Adv. Math. 194 (2005) 105–140. | MR | Zbl | DOI

[9] A. Colesanti and P. Cuoghi, The Brunn–Minkowski inequality for the n-dimensional logarithmic capacity of convex bodies. Potential Anal. 22 (2005) 289–304. | MR | Zbl | DOI

[10] A. Colesanti and M. Fimiani, The Minkowski problem for torsional rigidity. Indiana Univ. Math. J. 59 (2010) 1013–1039. | MR | Zbl | DOI

[11] I. Fragalà, Symmetry results for overdetermined problems on convex domains via Brunn–Minkowski inequalities. J. Math. Pures Appl. 97 (2012) 55–65. | MR | Zbl | DOI

[12] I. Fragalà and F. Gazzola, Partially overdetermined elliptic boundary value problems. J. Differ. Equ. 245 (2008) 1299–1322. | MR | Zbl | DOI

[13] I. Fragalà, F. Gazzola and J. Lamboley, Some sharp bounds for the p-torsion of convex domains. Geometric properties for parabolic and elliptic PDE’s. In Vol. 2 of Springer INdAM Ser. (2013) 97–115. | MR | Zbl | DOI

[14] I. Fragalà and B. Velichkov, Serrin-type theorems on triangles. Proc. Am. Math. Soc. 147 (2019) 1615–1626. | MR | DOI

[15] P. Grisvard, Elliptic problems in nonsmooth domains, in Vol. 69 Classics in Applied Mathematics. Reprint of the 1985 original [MR0775683], With a foreword by Susanne C. Brenner. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). | MR | Zbl

[16] A. Henrot, Shape Optimization and Spectral Theory. De Gruyter (2017). | MR | DOI

[17] D. Jerison, The direct method in the calculus of variations for convex bodies. Adv. Math. 122 (1996) 262–279. | MR | Zbl | DOI

[18] D. Jerison, A Minkowski problem for electrostatic capacity. Acta Math. 176 (1996) 1–47. | MR | Zbl | DOI

[19] M. Jungen, A model of columnar jointing. Math. Models Methods Appl. Sci. 22 (2012) 1150006. | MR | Zbl | DOI

[20] C. Nitsch, An isoperimetric result for the fundamental frequency via domain derivative. Calc. Var. Partial Differ. Equ. 49 (2014) 323–335. | MR | Zbl | DOI

[21] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Vol. 27 of Annals of Mathematics Studies. Princeton University Press, Princeton, N.J. (1951). | MR | Zbl

[22] R. Schneider, Convex bodies: the Brunn–Minkowski theory, in Vol. 151 Encyclopedia of Mathematics and its Applications, expanded ed.. Cambridge University Press, Cambridge (2014). | MR | Zbl

[23] A. Solynin, Isoperimetric inequalities for polygons and dissymetrization. Algebra Analiz 4 (1992) 210–234. | MR | Zbl

[24] A. Y. Solynin and V. A. Zalgaller, An isoperimetric inequality for logarithmic capacity of polygons. Ann. Math. 159 (2004) 277–303. | MR | Zbl | DOI

[25] J. Xiao, Exploiting log-capacity in convex geometry. Asian J. Math. 22 (2018) 953–978. | MR | DOI

Cité par Sources :