We prove that, in the class of convex polygons with a given number of sides, the regular n-gon is optimal for some shape optimization problems involving the torsional rigidity, the principal frequency of the Laplacian, or the logarithmic capacity.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2020083
Keywords: Shape optimization, polygons, Polya’s conjecture, eigenvalues, torsional rigidity
@article{COCV_2021__27_1_A5_0,
author = {Bucur, Dorin and Fragal\`a, Ilaria},
editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinski, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
title = {Symmetry results for variational energies on convex polygons},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2021},
publisher = {EDP-Sciences},
volume = {27},
doi = {10.1051/cocv/2020083},
mrnumber = {4201974},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2020083/}
}
TY - JOUR AU - Bucur, Dorin AU - Fragalà, Ilaria ED - Buttazzo, G. ED - Casas, E. ED - de Teresa, L. ED - Glowinski, R. ED - Leugering, G. ED - Trélat, E. ED - Zhang, X. TI - Symmetry results for variational energies on convex polygons JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2021 VL - 27 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2020083/ DO - 10.1051/cocv/2020083 LA - en ID - COCV_2021__27_1_A5_0 ER -
%0 Journal Article %A Bucur, Dorin %A Fragalà, Ilaria %E Buttazzo, G. %E Casas, E. %E de Teresa, L. %E Glowinski, R. %E Leugering, G. %E Trélat, E. %E Zhang, X. %T Symmetry results for variational energies on convex polygons %J ESAIM: Control, Optimisation and Calculus of Variations %D 2021 %V 27 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2020083/ %R 10.1051/cocv/2020083 %G en %F COCV_2021__27_1_A5_0
Bucur, Dorin; Fragalà, Ilaria. Symmetry results for variational energies on convex polygons. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. 3. doi: 10.1051/cocv/2020083
[1] , Hitting probabilities of killed Brownian motion: a study on geometric regularity. Ann. Sci. École Norm. Sup. 17 (1984) 451–467. | MR | Numdam | Zbl | DOI
[2] , Greenian potentials and concavity. Math. Ann. 272 (1985) 155–160. | MR | Zbl | DOI
[3] and , On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22 (1976) 366–389. | MR | Zbl | DOI
[4] and , A Faber–Krahn inequality for the Cheeger constant of N-gons. J. Geom. Anal. 26 (2016) 88–117. | MR | DOI
[5] and , Proof of the honeycomb asymptotics for optimal Cheeger clusters. Adv. Math. 350 (2019) 97–129. | MR | DOI
[6] , and , Optimal convex shapes for concave functionals. ESAIM: COCV 18 (2012) 693–711. | MR | Numdam | Zbl
[7] and , Stability and instability issues of the Weinstock inequality. Preprint arxiv (2020). | arXiv | MR
[8] , Brunn–Minkowski inequalities for variational functionals and related problems. Adv. Math. 194 (2005) 105–140. | MR | Zbl | DOI
[9] and , The Brunn–Minkowski inequality for the n-dimensional logarithmic capacity of convex bodies. Potential Anal. 22 (2005) 289–304. | MR | Zbl | DOI
[10] and , The Minkowski problem for torsional rigidity. Indiana Univ. Math. J. 59 (2010) 1013–1039. | MR | Zbl | DOI
[11] , Symmetry results for overdetermined problems on convex domains via Brunn–Minkowski inequalities. J. Math. Pures Appl. 97 (2012) 55–65. | MR | Zbl | DOI
[12] and , Partially overdetermined elliptic boundary value problems. J. Differ. Equ. 245 (2008) 1299–1322. | MR | Zbl | DOI
[13] , and , Some sharp bounds for the p-torsion of convex domains. Geometric properties for parabolic and elliptic PDE’s. In Vol. 2 of Springer INdAM Ser. (2013) 97–115. | MR | Zbl | DOI
[14] and , Serrin-type theorems on triangles. Proc. Am. Math. Soc. 147 (2019) 1615–1626. | MR | DOI
[15] , Elliptic problems in nonsmooth domains, in Vol. 69 Classics in Applied Mathematics. Reprint of the 1985 original [MR0775683], With a foreword by Susanne C. Brenner. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). | MR | Zbl
[16] , Shape Optimization and Spectral Theory. De Gruyter (2017). | MR | DOI
[17] , The direct method in the calculus of variations for convex bodies. Adv. Math. 122 (1996) 262–279. | MR | Zbl | DOI
[18] , A Minkowski problem for electrostatic capacity. Acta Math. 176 (1996) 1–47. | MR | Zbl | DOI
[19] , A model of columnar jointing. Math. Models Methods Appl. Sci. 22 (2012) 1150006. | MR | Zbl | DOI
[20] , An isoperimetric result for the fundamental frequency via domain derivative. Calc. Var. Partial Differ. Equ. 49 (2014) 323–335. | MR | Zbl | DOI
[21] and , in Mathematical Physics, Vol. 27 of Annals of Mathematics Studies. Princeton University Press, Princeton, N.J. (1951). | MR | Zbl
[22] , Convex bodies: the Brunn–Minkowski theory, in Vol. 151 Encyclopedia of Mathematics and its Applications, expanded ed.. Cambridge University Press, Cambridge (2014). | MR | Zbl
[23] , Isoperimetric inequalities for polygons and dissymetrization. Algebra Analiz 4 (1992) 210–234. | MR | Zbl
[24] and , An isoperimetric inequality for logarithmic capacity of polygons. Ann. Math. 159 (2004) 277–303. | MR | Zbl | DOI
[25] , Exploiting log-capacity in convex geometry. Asian J. Math. 22 (2018) 953–978. | MR | DOI
Cité par Sources :





