On the Plateau–Douglas problem for the Willmore energy of surfaces with planar boundary curves
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. S2

For a smooth closed embedded planar curve Γ, we consider the minimization problem of the Willmore energy among immersed surfaces of a given genus 𝔤 ≥ 1 having the curve Γ as boundary, without any prescription on the conormal. In case Γ is a circle we prove that do not exist minimizers and that the infimum of the problem equals β𝔤 − 4π, where β𝔤 is the energy of the closed minimizing surface of genus 𝔤. We also prove that the same result also holds if Γ is a straight line for the suitable analogously defined minimization problem on asymptotically flat surfaces. Then we study the case in which Γ is compact, 𝔤 = 1 and the competitors are restricted to a suitable class 𝒞 of varifolds that includes embedded surfaces. We prove that under suitable assumptions minimizers exists in this class of generalized surfaces.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2020049
Classification : 49J40, 49J45, 49Q20, 53A05, 49Q15, 53A30
Keywords: Willmore energy, Willmore surfaces with boundary, Navier boundary conditions, Simon’s ambient approach, existence
@article{COCV_2021__27_S1_A3_0,
     author = {Pozzetta, Marco},
     title = {On the {Plateau{\textendash}Douglas} problem for the {Willmore} energy of surfaces with planar boundary curves},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2020049},
     mrnumber = {4222150},
     zbl = {1467.49041},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2020049/}
}
TY  - JOUR
AU  - Pozzetta, Marco
TI  - On the Plateau–Douglas problem for the Willmore energy of surfaces with planar boundary curves
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2020049/
DO  - 10.1051/cocv/2020049
LA  - en
ID  - COCV_2021__27_S1_A3_0
ER  - 
%0 Journal Article
%A Pozzetta, Marco
%T On the Plateau–Douglas problem for the Willmore energy of surfaces with planar boundary curves
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2020049/
%R 10.1051/cocv/2020049
%G en
%F COCV_2021__27_S1_A3_0
Pozzetta, Marco. On the Plateau–Douglas problem for the Willmore energy of surfaces with planar boundary curves. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. S2. doi: 10.1051/cocv/2020049

[1] M. Abate and F. Tovena, Curve e Superfici. Springer, Italia (2006). | MR | Zbl | DOI

[2] R. Alessandroni and E. Kuwert, Local solutions to a free boundary problem for the Willmore functional. Calc. Var. Partial Differ. Equ. 55 (2016) 24. | MR | Zbl | DOI

[3] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications (2000). | MR | Zbl | DOI

[4] M. Bauer and E. Kuwert, Existence of minimizing Willmore surfaces of prescribed genus. Int. Math. Res. Notices 10 (2003) 553–576. | MR | Zbl | DOI

[5] M. Bergner, A. Dall’Acqua and S. Fröhlich, Symmetric Willmore surfaces of revolution satisfying natural boundary conditions. Calc. Var. Partial Differ. Equ. 39 (2010) 361–378. | MR | Zbl | DOI

[6] M. Bergner, A. Dall’Acqua and S. Fröhlich, Willmore surfaces of revolution with two prescribed boundary circles. J. Geometric Anal. 23 (2013) 283–302. | MR | Zbl | DOI

[7] B. Chen, Some conformal invariants of submanifolds and their applications. Bollettino dell’Unione Matematica Italiana 10 (1974) 380–385. | MR | Zbl

[8] F. Da Lio, F. Palmurella and T. Rivière, A resolution of the poisson problems for elastic plates. Arch. Ration. Mech. Anal. 236 (2020) 1593–1676. | MR | Zbl | DOI

[9] A. Dall’Acqua, Uniqueness for the homogeneous Dirichlet Willmore boundary value problem. Ann. Global Anal. Geom. 42 (2012) 411–420. | MR | Zbl | DOI

[10] A. Dall’Acqua, K. Deckelnick and H. Grunau, Classical solutions to the Dirichlet problem for Willmore surfaces of revolution. Adv. Calc. Var. 1 (2008) 379–397. | MR | Zbl

[11] A. Dall’Acqua, K. Deckelnick and G. Wheeler, Unstable Willmore surfaces of revolution subject to natural boundary conditions. Calc. Var. Partial Differ. Equ. 48 (2013) 293–313. | MR | Zbl | DOI

[12] A. Dall’Acqua, S. Fröhlich, H. Grunau and F. Schieweck, Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data. Adv. Calc. Var. 4 (2011) 1–81. | MR | Zbl | DOI

[13] K. Deckelnick and H. Grunau, A Navier boundary value problem for Willmore surfaces of revolution. Analysis (Munich) 29 (2009) 229–258. | MR | Zbl

[14] K. Deckelnick, H. Grunau and M. Röger, Minimising a relaxed Willmore functional for graphs subject to boundary conditions. Interfaces Free Bound. 19 (2017) 109–140. | MR | Zbl | DOI

[15] U. Dierkes, S. Hildebrandt and A. J. Tromba, Global Analysis of Minimal Surfaces. Springer (2010). | MR | Zbl

[16] S. Eichmann, Nonuniqueness for Willmore surfaces of revolution satisfying dirichlet boundary data. J. Geom. Anal. 26 (2016) 2563–2590. | MR | Zbl | DOI

[17] S. Eichmann, The Helfrich boundary value problem. Calc. Var. Partial Differ. Equ. 58 (2019) 34. | MR | Zbl | DOI

[18] S. Eichmann and H. Grunau, Existence for Willmore surfaces of revolution satisfying non-symmetric Dirichlet boundary conditions. Adv. Calc. Var. 12 (2019) 333–361. | MR | Zbl | DOI

[19] J. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimizing curvature. Indiana Univ. Math. J. 35 (1986) 45–71. | MR | Zbl | DOI

[20] E. Kuwert and R. Schätzle, Removability of point singularities of Willmore surfaces. Ann. Math. 160 (2004) 315–357. | MR | Zbl | DOI

[21] J. Langer, A compactness theorem for sirfaces with L$$-bounded second fundamental form. Math. Ann. 270 (1985) 223–234. | MR | Zbl | DOI

[22] T. Liimatainen and M. Salo, n-harmonic coordinates and the regularity of conformal mappings. Math. Res. Lett. 21 (2014) 341–361. | MR | Zbl | DOI

[23] R. Mandel, Explicit formulas, symmetry and symmetry breaking for Willmore surfaces of revolution. Ann. Glob. Anal. Geom. 54 (2018) 187–236. | MR | Zbl | DOI

[24] C. Mantegazza, Curvature varifolds with boundary. J. Differ. Geometry 43 (1996) 807–843. | MR | Zbl | DOI

[25] A. Mondino and C. Scharrer, Existence and regularity of spheres minimising the Canham-Helfrich energy. Arch. Ration. Mech. Anal. 236 (2020) 1455–1485. | MR | Zbl | DOI

[26] J. Nitsche, Boundary value problems for variational integrals involving surface curvatures. Quart. Appl. Math. 51 (1993) 363–387. | MR | Zbl | DOI

[27] M. Novaga and M. Pozzetta, Connected surfaces with boundary minimizing the Willmore energy. Math. Eng. 2 (2020) 527–556. | MR | Zbl | DOI

[28] B. Palmer, Uniqueness theorems for Willmore surfaces with fixed and free Boundaries. Indiana Univ. Math. J. 49 (2000) 1581–1601. | MR | Zbl | DOI

[29] J. Pitts, Existence and regularity of minimal surfaces on riemannian manifolds. Mathematical Notes. Princeton University Press (1981). | MR | Zbl

[30] M. Pozzetta, Ph.D. thesis, Università di Pisa. Inpreparation (2020).

[31] T. Rivière, Analysis aspects of Willmore surfaces. Invent. Math. 174 (2008) 1–45. | MR | Zbl | DOI

[32] T. Rivière, Lipschitz conformal immersions fromdegenerating Riemann surfaces with L2 -bounded second fundamental forms. Adv. Calc. Var. 6 (2013) 1–31. | MR | Zbl | DOI

[33] T. Rivière, Variational principles for immersed surfaces with L2-bounded second fundamental form. J. für die reine Angew. Math. 695 (2014) 41–98. | MR | Zbl | DOI

[34] R. Schätzle, The Willmore boundary problem. Calc. Var. 37 (2010) 275–302. | MR | Zbl | DOI

[35] J. Schygulla, Willmore minimizers with prescribed isoperimetric ratio. Arch. Ration. Mech. Anal. 203 (2012) 901–941. | MR | Zbl | DOI

[36] L. Simon, Lectures on geometric measure theory. Proc. Centre Math. Anal. Austr. Natl. Univ. (1984). | MR | Zbl

[37] L. Simon, Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geometry 1 (1993) 281–326. | MR | Zbl | DOI

[38] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 3, Third Edition, Publish or Perish, Houston, Texas (1999). | Zbl

[39] J. L. Weiner, On a problem of Chen, Willmore, et al. Indiana Univ. Math. J. 27 (1978) 19–35. | MR | Zbl | DOI

[40] T. J. Willmore, Note on embedded surfaces. Ann. Alexandru Cuza Univ. Section I 11B (1965) 493–496. | MR | Zbl

[41] T. J. Willmore, Riemannian Geometry. Oxford Science Publications (1993). | MR | Zbl | DOI

Cité par Sources :