In this paper we give a negative answer to the question posed in D. Serre (Ann. Inst. Henri Poincaré C Anal. Non linéaire 35 (2018) 1209–1234, Open Question 2.1) about possible gains of integrability of determinants of divergence-free, non-negative definite matrix-fields. We also analyze the case in which the matrix-field is given by the Hessian of a convex function.
Keywords: Matrix-fields, determinants, integrability
@article{COCV_2020__26_1_A97_0,
author = {De Rosa, Luigi and Tione, Riccardo},
title = {On a question of {D.} {Serre}},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2020},
publisher = {EDP Sciences},
volume = {26},
doi = {10.1051/cocv/2020021},
mrnumber = {4185067},
zbl = {1460.26010},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2020021/}
}
TY - JOUR AU - De Rosa, Luigi AU - Tione, Riccardo TI - On a question of D. Serre JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2020021/ DO - 10.1051/cocv/2020021 LA - en ID - COCV_2020__26_1_A97_0 ER -
De Rosa, Luigi; Tione, Riccardo. On a question of D. Serre. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 97. doi: 10.1051/cocv/2020021
[1] , Rank one property for derivatives of functions with bounded variation. Proc. R. Soc. Edinb 123 (1993) 239–274 | MR | Zbl | DOI
[2] , , and , Dimensional estimates and rectifiability for measures satisfying linear PDE constraints. To appear in: Geom. Funct. Anal. (2018) | MR | Zbl
[3] , Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010) | MR | Zbl
[4] , , and , Compensated compactness and Hardy spaces. J. Math. Pures Appl. Neuvième Série 72 (1993) 247–286 | MR | Zbl
[5] Regularity of optimal transport maps and applications.Ph.D. thesis, Scuola Normale Superiore (2012) | Zbl | MR
[6] and , On the structure of A-free measures and applications. Ann. Math. 184 (2016) 1017–1039 | MR | Zbl | DOI
[7] , and , Rectifiability of varifolds with locally bounded first variation with respect to anisotropic surface energies. Commun. Pure Appl. Math. 71 (2017) 1123–1148 | MR | Zbl | DOI
[8] , Partial Differential Equations, Vol. 19. American Mathematical Soc., Ann Arbor (1998) | MR | Zbl
[9] and , Measure theory and fine properties of functions. Chapman Hall/CRC, Boca Raton (2015) | MR | Zbl | DOI
[10] , The Monge-Ampère Equation and Its Applications. Zurich Lectures in Advanced Mathematics (2017) | MR | Zbl
[11] , Rigidity and Geometry of Microstructures, Max-Planck-Inst. für Mathematik in den Naturwiss, Leipzig (2003)
[12] , A surprising higher integrability property of mappings with positive determinant. Bull. Am. Math. Soc. 21 (1989) 245–249 | MR | Zbl | DOI
[13] , Higher integrability of determinants and weak convergence in . J. die reine Angew. Math. 1990 (1990) 412 | MR | Zbl
[14] , Compacité par compensation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5 (1978) 489–507 | MR | Zbl | Numdam
[15] , Compacité par compensation, II. Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (1979), 245–256 | MR | Zbl
[16] , Divergence-free positive symmetric tensors and fluid dynamics. Ann. Inst. Henri Poincaré C Anal. Non linéaire 35 (2018) 1209–1234 | MR | Zbl | Numdam | DOI
[17] , Note on the class . Stud. Math. 32 (1969) 305–310 | MR | Zbl | DOI
[18] , Compensated compactness and applications to partial differential equations. Nonlinear Anal. Mech. IV (1979) 136–212 | MR | Zbl
[19] , The compensated compactness method applied to systems of conservation laws. Syst. Non-linear Partial Differ. Equ. 111 (1983) 01 | MR | Zbl
Cité par Sources :





