Motivated by results of Figalli and Jerison [J. Funct. Anal. 266 (2014) 1685–1701] and Hernández [Pure Appl. Funct. Anal., Preprint https://arxiv.org/abs/1709.08262 (2017)], we prove the following formula:
| $$ |
where Ω ⊂ ℝ$$ is a regular domain, u ∈ BV (Ω) ∩ L$$(Ω), q > 1 and η$$(z) = ε$$η(z∕ε) is a smooth mollifier. In addition, we apply the above formula to the study of certain singular perturbation problems.
Keywords: Function of bounded variations, mollifier, fractional Sobolev norm, singular perturbation functional
@article{COCV_2020__26_1_A77_0,
author = {Poliakovsky, Arkady},
title = {Asymptotic behavior of the $W^{1 / q,q}$\protect\emph{}-norm of mollified $BV$\protect\emph{} functions and applications to singular perturbation problems},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2020},
publisher = {EDP Sciences},
volume = {26},
doi = {10.1051/cocv/2019051},
mrnumber = {4156826},
zbl = {1471.46034},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2019051/}
}
TY - JOUR
AU - Poliakovsky, Arkady
TI - Asymptotic behavior of the $W^{1 / q,q}$-norm of mollified $BV$ functions and applications to singular perturbation problems
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2020
VL - 26
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/cocv/2019051/
DO - 10.1051/cocv/2019051
LA - en
ID - COCV_2020__26_1_A77_0
ER -
%0 Journal Article
%A Poliakovsky, Arkady
%T Asymptotic behavior of the $W^{1 / q,q}$-norm of mollified $BV$ functions and applications to singular perturbation problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2019051/
%R 10.1051/cocv/2019051
%G en
%F COCV_2020__26_1_A77_0
Poliakovsky, Arkady. Asymptotic behavior of the $W^{1 / q,q}$-norm of mollified $BV$ functions and applications to singular perturbation problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 77. doi: 10.1051/cocv/2019051
[1] , and , Un résultat de perturbations singulières avec la norme . C. R. Acad. Sci. Paris 319 (1994) 333–338. | MR | Zbl
[2] , Metric space valued functions of bounded variation. Ann. Sc. Norm. Super Pisa Cl. Sci. 17 (1990) 439–478. | MR | Zbl | Numdam
[3] , and , Line energies for gradient vector fields in the plane. Calc. Var. Partial Differ. Equ. 9 (1999) 327–355. | MR | Zbl | DOI
[4] , and , Gamma-convergence of nonlocal perimeter functionals. Manuscripta Math. 134 (2010) 377–403. | MR | Zbl | DOI
[5] , and , Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000). | MR | Zbl
[6] and , A mathematical problem related to the physical theory of liquid crystal configurations. Proc. Centre Math. Anal. Austral. Nat. Univ. 12 (1987) 1–16. | MR
[7] and , On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields. Proc. R. Soc. Edinb. Sect. A 129 (1999) 1–17. | MR | Zbl | DOI
[8] , and , Another Look at Sobolev Spaces. Optimal Control and Partial Differential Equations, edited by , et al., A volume in honour of A. Benssoussan’s 60th birthday. IOS Press, Bristol (2001) 439–455. | MR | Zbl
[9] and , Regularity properties of nonlocal minimal surfaces via limiting arguments. Adv. Math. 248 (2013) 843–871. | MR | Zbl | DOI
[10] , On an open question about functions of bounded variation. Calc. Var. Partial Differ. Equ. 15 (2002) 519–527. | MR | Zbl | DOI
[11] , and , Asymptotic expansions of the contact angle in nonlocal capillarity problems. J. Nonlinear Sci. 27 (2017) 1531–1550. | MR | Zbl | DOI
[12] and , How to recognize convexity of a set from its marginals. J. Funct. Anal. 266 (2014) 1685–1701. | MR | Zbl | DOI
[13] , Properties of a Hilbertian Norm for Perimeter. Preprint (2017). | arXiv | MR
[14] , The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98 (1987) 123–142. | MR | Zbl | DOI
[15] and , Un esempio di -convergenza. Boll. Un. Mat. Ital. B 14 (1977) 285–299. | MR | Zbl
[16] and , Il limite nella -convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A 14 (1977) 526–529. | MR | Zbl
[17] , and , Local and global minimizers for a variational energy involving a fractional norm. Ann. Mat.Pura Appl. 192 (2013) 673–718. | MR | Zbl | DOI
[18] , Upper bounds for singular perturbation problems involving gradient fields. J. Eur. Math. Soc. 9 (2007) 1–43. | MR | Zbl | DOI
[19] , Jump detection in Besov spaces via a new BBM formula. Applications to Aviles-Giga type functionals. Commun. Contemp. Math. 20 (2018) 1750096. | MR | Zbl | DOI
[20] , A new approach to Sobolev spaces and connections to Gamma-convergence. Calc. Var. Partial Differ. Equ. 19 (2004) 229–255. | MR | Zbl | DOI
[21] and , -convergence for nonlocal phase transitions. Ann. Inst. Henri Poincaré Anal. Non Linéaire 29 (2012) 479–500. | MR | Zbl | Numdam | DOI
[22] , The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal. 101 (1988) 209–260. | MR | Zbl | DOI
Cité par Sources :





