In this paper, we study a bilinear optimal control problem associated to a chemo-repulsion model with linear production term in a bidimensional domain. The existence, uniqueness and regularity of strong solutions of this model are deduced, proving the existence of a global optimal solution. Afterwards, we derive first-order optimality conditions by using a Lagrange multipliers theorem.
Keywords: Chemorepulsion-production model, strong solutions, bilinear control, optimality conditions
@article{COCV_2020__26_1_A29_0,
author = {Guill\'en-Gonz\'alez, Francisco and Mallea-Zepeda, Exequiel and Rodr{\'\i}guez-Bellido, Mar{\'\i}a \'Angeles},
title = {Optimal bilinear control problem related to a chemo-repulsion system in {2D} domains},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2020},
publisher = {EDP Sciences},
volume = {26},
doi = {10.1051/cocv/2019012},
mrnumber = {4079209},
zbl = {1442.35189},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2019012/}
}
TY - JOUR AU - Guillén-González, Francisco AU - Mallea-Zepeda, Exequiel AU - Rodríguez-Bellido, María Ángeles TI - Optimal bilinear control problem related to a chemo-repulsion system in 2D domains JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2019012/ DO - 10.1051/cocv/2019012 LA - en ID - COCV_2020__26_1_A29_0 ER -
%0 Journal Article %A Guillén-González, Francisco %A Mallea-Zepeda, Exequiel %A Rodríguez-Bellido, María Ángeles %T Optimal bilinear control problem related to a chemo-repulsion system in 2D domains %J ESAIM: Control, Optimisation and Calculus of Variations %D 2020 %V 26 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2019012/ %R 10.1051/cocv/2019012 %G en %F COCV_2020__26_1_A29_0
Guillén-González, Francisco; Mallea-Zepeda, Exequiel; Rodríguez-Bellido, María Ángeles. Optimal bilinear control problem related to a chemo-repulsion system in 2D domains. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 29. doi: 10.1051/cocv/2019012
[1] , Mixed boundary value problems for steady-state magnetohydrodynamic equations of viscous incompressible fluids. Comp. Math. Math. Phys. 56 (2016) 1426–1439. | MR | Zbl | DOI
[2] , Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. Function spaces, differential operators and nonlinear analysis. Teubner-Texte Math. (1993) 9–126. | MR | Zbl
[3] , . , Multigrid optimization methods for the optimal control of convection diffusion problems with bilinear control. J. Optim. Theory Appl. 168 (2016) 510–533. | MR | Zbl | DOI
[4] and , Stabilization by space controls for a class of semilinear parabolic equations. SIAM J. Control Optim. 55 (2017) 512–532. | MR | Zbl | DOI
[5] and , A uniform controllability for the Keller-Segel system. Asymptot. Anal. 92 (2015) 318–338. | MR | Zbl
[6] and , A controllability result for a chemotaxis-fluid model. J. Diff. Equ. 262 (2017) 4863–4905. | MR | Zbl | DOI
[7] , and , Global existence and convergence to steady states in a chemorepulsion system. Parabolic and Navier-Stokes equations. Part 1. Banach Center Publ., 81. Banach Center Publ., 81, Part 1, Polish Acad. Sci. Inst. Math., Warsaw. (2008) 105–117. | MR | Zbl
[8] and , Existence of solutions and optimal control for a model of tissue invasion by solid tumours. J. Math. Anal. Appl. 421 (2015) 842–877. | MR | Zbl | DOI
[9] and , Singular limits in thermodynamics of viscous fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel (2009). | MR | Zbl
[10] and , Optimal control of a chemotaxis system. Quart. Appl. Math. 61 (2003) 193–211. | MR | Zbl | DOI
[11] and , An augmented Lagrange method for elliptic state constrained optimal control problems. Comp. Optim. Appl. 69 (2018) 857–880. | MR | Zbl | DOI
[12] and , Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970) 399–415. | MR | Zbl | DOI
[13] , and , Pontyagin’s principle for optimal control problem governed by 3D Navier-Stokes equations. J. Optim. Theory Appl. 173 (2017) 30–55. | MR | Zbl | DOI
[14] and , A priori error estimates for elliptic optimal control problems with bilinear state equation. J. Comp. Appl. Mech. 230 (2009) 781–802. | MR | Zbl
[15] , and , Optimal control of the undamped linear wave equation with measure valued controls. SIAM J. Control Optim. 54 (2016) 1212–1244. | MR | Zbl | DOI
[16] , Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | MR | Zbl
[17] , and , A boundary control problem for micropolar fluids. J. Optim. Theory Appl. 169 (2016) 349–69. | MR | Zbl | DOI
[18] , Les méthodes directes en théorie des equations elliptiques. Editeurs Academia, Prague (1967). | MR | Zbl
[19] , and , On a distributed control problem for a coupled chemotaxis-fluid model. Discrete Cotin. Dyn. Syst. B. 23 (2018) 557–517. | MR | Zbl
[20] and , On the Rayleigh-Bénard-Marangoni system and a related optimal control problem. Comp. Math. Appl. 74 (2017) 2969–2991. | MR | Zbl | DOI
[21] , Boundary control of chemotaxis reaction diffusion system. Honam Math. J. 30 (2008) 469–478. | MR | Zbl | DOI
[22] and , Optimal control of Keller-Segel equations. J. Math. Anal. Appl. 256 (2001) 45–66. | MR | Zbl | DOI
[23] , Compacts sets in the space $L^p ( O , T ; B )$. Ann. Mat. Pura Appl. 146 (1987) 65–96. | MR | Zbl | DOI
[24] Optimal control of the primitive equations of the ocean with state constraints. Nonlinear Anal. 73 (2010) 634–649. | MR | Zbl | DOI
[25] , Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensivity. Discrete Cotin. Dyn. Syst. B. 18 (2013) 2705–2722. | MR | Zbl
[26] , Interpolation theory, function spaces, differential operators. VEB Deutscher Verlag de Wissenschaften, Berlin (1978). | MR | Zbl
[27] and , Multigrid optimization methods for linear and bilinear elliptic optimal control problems. Computing 82 (2008) 31–52. | MR | Zbl | DOI
[28] , Optimal control of 3-dimensional Navier-Stokes equations with state constraints. SIAM J. Control Optim. 41 (2002) 583–606. | MR | Zbl | DOI
[29] and , Optimal control problem for Cahn-Hilliard equations with state constraints. J. Dyn. Control Syst. 21 (2015) 257–272. | MR | Zbl | DOI
[30] and , Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 (1979) 49–62. | MR | Zbl | DOI
Cité par Sources :





