Duality results and regularization schemes for Prandtl–Reuss perfect plasticity
ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. S1

We consider the time-discretized problem of the quasi-static evolution problem in perfect plasticity posed in a non-reflexive Banach space. Based on a novel equivalent reformulation in a reflexive Banach space, the primal problem is characterized as a Fenchel dual problem of the classical incremental stress problem. This allows to obtain necessary and sufficient optimality conditions for the time-discrete problems of perfect plasticity. Furthermore, the consistency of a primal-dual stabilization scheme is proven. As a consequence, not only stresses, but also displacements and strains are shown to converge to a solution of the original problem in a suitable topology. The corresponding dual problem has a simpler structure and turns out to be well-suited for numerical purposes. For the resulting subproblems an efficient algorithmic approach in the infinite-dimensional setting based on the semismooth Newton method is proposed.

DOI : 10.1051/cocv/2018004
Classification : 74C05, 49M15, 49K20, 49M29
Keywords: Perfect plasticity, Prandtl–Reuss plasticity, small-strain, Fenchel duality, semismooth Newton
@article{COCV_2021__27_S1_A2_0,
     author = {Hinterm\"uller, M. and R\"osel, S.},
     title = {Duality results and regularization schemes for {Prandtl{\textendash}Reuss} perfect plasticity},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {27},
     doi = {10.1051/cocv/2018004},
     mrnumber = {4222147},
     zbl = {1468.74007},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2018004/}
}
TY  - JOUR
AU  - Hintermüller, M.
AU  - Rösel, S.
TI  - Duality results and regularization schemes for Prandtl–Reuss perfect plasticity
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2021
VL  - 27
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2018004/
DO  - 10.1051/cocv/2018004
LA  - en
ID  - COCV_2021__27_S1_A2_0
ER  - 
%0 Journal Article
%A Hintermüller, M.
%A Rösel, S.
%T Duality results and regularization schemes for Prandtl–Reuss perfect plasticity
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2021
%V 27
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2018004/
%R 10.1051/cocv/2018004
%G en
%F COCV_2021__27_S1_A2_0
Hintermüller, M.; Rösel, S. Duality results and regularization schemes for Prandtl–Reuss perfect plasticity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 27 (2021), article no. S1. doi: 10.1051/cocv/2018004

[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces. Pure and Applied Mathematics. Elsevier Science (2003). | MR | Zbl

[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press Oxford (2000). | MR | Zbl | DOI

[3] G. Anzellotti and M. Giaquinta, Existence of the displacements field for an elasto-plastic body subject to Hencky’s law and Von Mises yield condition. Manuscr. Math. 32 (1980) 101–136. | MR | Zbl | DOI

[4] D. N. Arnold and R. Winther, Mixed finite elements for elasticity. Numer. Math. 92 (2002) 401–419. | MR | Zbl | DOI

[5] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis. Dover Books on Mathematics Series. Dover Publications (1984). | MR | Zbl

[6] C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities. John Wiley and Sons (1984). | MR | Zbl

[7] S. Bartels and T. Roubiček Numerical approaches to thermally coupled perfect plasticity. Numer. Methods Part. Differ. Eq. 29 (2013) 1837–1863. | MR | Zbl | DOI

[8] S. Bartels, A. Mielke and T. Roubiček Quasi-static small-strain plasticity in the limit of vanishing hardening and its numerical approximation. SIAM J. Numer. Anal. 50 (2012) 951–976. | MR | Zbl | DOI

[9] J.-M. E. Bernard, Density results in Sobolev spaces whose elements vanish on a part of the boundary. Chinese Ann. Math. Ser. B 32 (2011) 823–846. | MR | Zbl | DOI

[10] J.-F. Bonnans, J. C. Gilbert, C. Lemaréchal and C. A. Sagastizábal, Numerical Optimization, 2nd ed. Springer (2006). | MR | Zbl

[11] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics (1991). | MR | Zbl

[12] C. Carstensen, Convergence of adaptive finite element methods in computational mechanics. Appl. Numer. Math. 59 (2009) 2119–2130. | MR | Zbl | DOI

[13] X. Chen, Z. Nashed and L. Qi, Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38 (2001) 1200–1216. | MR | Zbl | DOI

[14] G. Dal Maso An Introduction to Γ-convergence. Birkhäuser, Boston (1993). | MR | Zbl | DOI

[15] G. Dal Maso, A. Desimone and M. G. Mora, Quasistatic Evolution Problems for Linearly Elastic-perfectly Plastic Materials. Arch. Rational Mech. Anal. 180 (2006) 237–291. | MR | Zbl | DOI

[16] G. Dal Maso, A. Demyanov and A. Desimone, Quasistatic evolution problems for pressure-sensitive plastic materials. Milan J. Math. 75 (2007) 117–134. | MR | Zbl | DOI

[17] A. Demyanov, Regularity of stresses in Prandtl–Reuss perfect plasticity. Calc. Variat. Part. Differ. Eq. 34 (2009) 23–72. | MR | Zbl | DOI

[18] P. Doktor and A. Ženišek, The density of infinitely differentiable functions in Sobolev spaces with mixed boundary conditions. Appl. Math., Praha 51 (2006) 517–547. | MR | Zbl

[19] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en phyisque. Dunod, Paris (1972). | MR | Zbl

[20] F. Ebobisse and B. D. Reddy, Some mathematical problems in perfect plasticity. Comput. Methods Appl. Mech. Eng. 193 (2004) 5071–5094. | MR | Zbl | DOI

[21] I. Ekeland and R. Temam, Convex Analysis and Variational Problems. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (1987). | MR | Zbl

[22] G. A. Francfort and A. Giacomini, Small-strain heterogeneous elastoplasticity revisited. Commun. Pure Appl. Math. 65 (2012) 1185–1241. | MR | Zbl | DOI

[23] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer (1998). | Zbl

[24] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes equations. Springer-Verlag (1986). | MR | Zbl | DOI

[25] R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer (1984). | MR | Zbl | DOI

[26] W. Han and B. D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis, 2nd ed. Springer, New York (2013). | MR | Zbl | DOI

[27] M. Hintermüller, Mesh independence and fast local convergence of a primal-dual active-set method for mixed control-state constrained elliptic control problems. ANZIAM J. 49 (2007) 1–38. | MR | Zbl | DOI

[28] M. Hintermüller and K. Kunisch, Total bounded variation regularization as bilaterally constrained optimization problem. SIAM J. Appl. Math. 64 (2004) 1311–1333. | MR | Zbl | DOI

[29] M. Hintermüller and K. Kunisch, Feasible and non-interior path-following in constrained minimization with low multiplier regularity. SIAM J. Control Optim. 45 (2006) 1198–1221. | MR | Zbl | DOI

[30] M. Hintermüller and C. N. Rautenberg, A sequential minimization technique for elliptic quasi-variational inequalities with gradient constraints. SIAM J. Optim. 22 (2012) 1224–1257. | MR | Zbl | DOI

[31] M. Hintermüller and S. Rösel, A duality-based path-following semismooth Newton method for elasto-plastic contact problems. J. Comput. Appl. Math. 292 (2016) 150–173. | MR | Zbl | DOI

[32] M. Hintermüller and M. Ulbrich, A mesh-independence result for semismooth Newton methods. Math. Program., Ser. B 171 (2004) 151–184. | MR | Zbl

[33] M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13 (2003) 865–888. | MR | Zbl

[34] M. Hintermüller, C. N. Rautenberg and S. Rösel, Density of convex intersections and applications. Proc. R. Soc. A 473 (2017) 20160919. | MR | Zbl | DOI

[35] K. Ito and K. Kunisch, Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces. Nonlinear Anal. Theory Methods Appl. Ser. A, Theory Methods 41 (2000) 591–616. | MR | Zbl | DOI

[36] C. Johnson, Existence theorems for plasticity problems. J. Math. Pure Appl. 55 (1976) 431–444. | MR | Zbl

[37] R. Kohn and R. Temam, Dual spaces of stresses and strains, with applications to Hencky plasticity. Appl. Math. Optim. 10 (1983) 1–35. | MR | Zbl | DOI

[38] S. Li and W. K. Liu, Numerical simulations of strain localization in inelastic solids using mesh-free methods. Int. J. Numer. Methods Eng. 48 (2000) 1285–1309. | Zbl | DOI

[39] A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems. Calc. Variat. Part. Differ. Eq. 22 (2005) 73–99. | MR | Zbl | DOI

[40] H. Matthies, Finite element approximations in thermo-plasticity. Numer. Funct. Anal. Optim. 1 (1979) 145–160. | MR | Zbl | DOI

[41] A. Mielke and T. Roubiček, Rate-independent Systems. Springer (2015). | MR | DOI

[42] U. Mosco. Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3 (1969) 510–585. | MR | Zbl | DOI

[43] A. Needleman and V. Tvergaard, Analyses of plastic flow localization in metals. Appl. Mech. Rev. 45 (1992) S3–S18. | DOI

[44] J. T. Oden and N. Kikuchi, Contact Problems in Elasticity. Society for Industrial and Applied Mathematics (1988). | MR | Zbl

[45] R. Rannacher and F.-T. Suttmeier, A posteriori error control in finite element methods via duality techniques: application to perfect plasticity. Comput. Mech. 21 (1998) 123–133. | MR | Zbl | DOI

[46] S. Repin, Errors of finite element method for perfectly elasto-plastic problems. Math. Models Methods Appl. Sci. 06 (1996) 587–604. | MR | Zbl | DOI

[47] T. Roubiček and J. Valdman, Perfect plasticity with damage and healing at small strains, its modeling, analysis, and computer implementation. SIAM J. Appl. Math. 76 (2016) 314–340. | MR | Zbl | DOI

[48] M. Sauter. Numerical Analysis of Algorithms for Infinitesimal Associated and Non-Associated Elasto-Plasticity. Ph.D. thesis, Karlsruher Institut für Technologie (2010).

[49] M. Sauter and C. Wieners, On the superlinear convergence in computational elasto-plasticity. Comput. Methods Appl. Mech. Eng. 200 (2011) 3646–3658. | MR | Zbl | DOI

[50] A. Schwarz, J. Schröder and G. Starke, Least-squares mixed finite elements for small strain elasto-viscoplasticity. Int. J. Numer. Methods Eng. 77 (2009) 1351–1370. | MR | Zbl | DOI

[51] J. C. Simo and T. J. R. Hughes, Computational Inelasticity. Springer-Verlag, Berlin (1998). | MR | Zbl

[52] F. Solombrino, Quasistatic evolution in perfect plasticity for general heterogeneous materials. Arch. Ration. Mech. Anal. 212 (2014) 283–330. | MR | Zbl | DOI

[53] G. Strang and R. Temam, Functions of bounded deformation. Arch. Ration. Mech. Anal. 75 (1980) 7–21. | MR | Zbl | DOI

[54] P.-M. Suquet, Sur les équations de la plasticité: existence et régularité des solutions. J. Mec., Paris 20 (1981) 3–39. | MR | Zbl

[55] R. Temam, Mathematical Problems in Plasticity. Gauthier-Villars (1985). | MR | Zbl

[56] C. Wieners, Multigrid methods for Prandtl-Reuss plasticity. Numer. Linear Algebra Appl. 6 (1999) 457–478. | MR | Zbl | DOI

[57] C. Wieners. Nonlinear solution methods for infinitesimal perfect plasticity. Zeitsch. Angew. Math. Mech. 87 (2007) 643–660. | MR | Zbl | DOI

Cité par Sources :

This research was carried out in the framework of Matheon supported by the Einstein Foundation Berlin within the ECMath projects OT1, SE5 and SE15 as well as project A-AP24. The authors further gratefully acknowledge the support of the DFG through the DFG-SPP 1962: Priority Programme “Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization” within Projects 10, 11 and 13.