In this article we prove that the codimension of the abnormal set of the endpoint map for certain classes of Carnot groups of step 2 is at least three. Our result applies to all step 2 Carnot groups of dimension up to 7 and is a generalisation of a previous analogous result for step 2 free nilpotent groups.
Accepté le :
DOI : 10.1051/cocv/2018002
Keywords: Sard property, endpoint map, abnormal curves, Carnot groups, sub-Riemannian geometry
Ottazzi, Alessandro 1 ; Vittone, Davide 1
@article{COCV_2019__25__A18_0,
author = {Ottazzi, Alessandro and Vittone, Davide},
title = {On the codimension of the abnormal set in step two {Carnot} groups},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
year = {2019},
publisher = {EDP Sciences},
volume = {25},
doi = {10.1051/cocv/2018002},
zbl = {1444.53024},
mrnumber = {3981990},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2018002/}
}
TY - JOUR AU - Ottazzi, Alessandro AU - Vittone, Davide TI - On the codimension of the abnormal set in step two Carnot groups JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2019 VL - 25 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2018002/ DO - 10.1051/cocv/2018002 LA - en ID - COCV_2019__25__A18_0 ER -
%0 Journal Article %A Ottazzi, Alessandro %A Vittone, Davide %T On the codimension of the abnormal set in step two Carnot groups %J ESAIM: Control, Optimisation and Calculus of Variations %D 2019 %V 25 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2018002/ %R 10.1051/cocv/2018002 %G en %F COCV_2019__25__A18_0
Ottazzi, Alessandro; Vittone, Davide. On the codimension of the abnormal set in step two Carnot groups. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 18. doi: 10.1051/cocv/2018002
[1] , Any sub-Riemannian metric has points of smoothness. Dokl. Akad. Nauk 424 (2009) 295–298 | Zbl | MR
[2] , Some open problems, in Geometric Control Theory and Sub-Riemannian Geometry. Vol. 5 of Springer INdAM Series (2014) 1–14 | Zbl | MR
[3] , and , Geodesics and horizontal-path spaces in Carnot groups. Geom. Topol. 19 (2015) 1569–1630 | Zbl | MR | DOI
[4] , Carnot-Carathéodory spaces seen from within, in Sub-Riemannian Geometry. Vol. 144 of Progress in Mathematics. Birkhäuser, Basel (1996) 79-323 | Zbl | MR
[5] , , , and , Sard property for the endpoint map on some Carnot groups. Ann. Inst. Henri Poincaré Anal. Non Linéaire 33 (2016) 1639–1666 | Zbl | MR | Numdam | DOI
[6] , A Tour of Subriemannian Geometries, Their Geodesics and Applications. Vol. 91 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2002) | Zbl | MR
[7] and , Morse-Sard type results in sub- Riemannian geometry. Math. Ann. 332 (2005) 145–159 | Zbl | MR | DOI
Cité par Sources :





