We approximate an elliptic problem with oscillatory coefficients using a problem of the same type, but with constant coefficients. We deliberately take an engineering perspective, where the information on the oscillatory coefficients in the equation can be incomplete. A theoretical foundation of the approach in the limit of infinitely small oscillations of the coefficients is provided, using the classical theory of homogenization. We present a comprehensive study of the implementation aspects of our method, and a set of numerical tests and comparisons that show the potential practical interest of the approach. The approach detailed in this article improves on an earlier version briefly presented in [C. Le Bris, F. Legoll and K. Li, C.R. Acad. Sci. Paris, Série I 351 (2013) 265–270].
Accepté le :
DOI : 10.1051/cocv/2017061
Keywords: Elliptic PDEs, Oscillatory coefficients, Homogenization, Coarse-graining
Le Bris, Claude 1 ; Legoll, Frédéric 1 ; Lemaire, Simon 1
@article{COCV_2018__24_4_1345_0,
author = {Le Bris, Claude and Legoll, Fr\'ed\'eric and Lemaire, Simon},
title = {On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {1345--1380},
year = {2018},
publisher = {EDP Sciences},
volume = {24},
number = {4},
doi = {10.1051/cocv/2017061},
zbl = {1419.35020},
mrnumber = {3922435},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2017061/}
}
TY - JOUR AU - Le Bris, Claude AU - Legoll, Frédéric AU - Lemaire, Simon TI - On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 1345 EP - 1380 VL - 24 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2017061/ DO - 10.1051/cocv/2017061 LA - en ID - COCV_2018__24_4_1345_0 ER -
%0 Journal Article %A Le Bris, Claude %A Legoll, Frédéric %A Lemaire, Simon %T On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 1345-1380 %V 24 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2017061/ %R 10.1051/cocv/2017061 %G en %F COCV_2018__24_4_1345_0
Le Bris, Claude; Legoll, Frédéric; Lemaire, Simon. On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1345-1380. doi: 10.1051/cocv/2017061
[1] and , Boundary layer tails in periodic homogenization. ESAIM: COCV 4 (1999) 209–243 | Zbl | Numdam | MR
[2] , , , and , Introduction to numerical stochastic homogenization and the related computational challenges: some recent developments, Multiscale Modeling and Analysis for Materials Simulation. Edited by and . In Vol. 22 of Lecture Notes Series. Institute for Mathematical Sciences, National University of Singapore (2011) 197–272 | MR
[3] , and Asymptotic analysis for periodic structures. In Vol. 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York (1978) | Zbl | MR
[4] , and , Une variante de la théorie de l’homogénéisation stochastique des opérateurs elliptiques (A variant of stochastic homogenization theory for elliptic operators). C.R. Acad. Sci. Paris, Série I 343 (2006) 717–724 | Zbl | MR | DOI
[5] , and , Stochastic homogenization and random lattices. J. Math. Pures Appl. 88 (2007) 34–63 | Zbl | MR | DOI
[6] and , Approximation of effective coefficients in stochastic homogenization. Ann. Inst. Henri Poincaré Probab. Stat. 40 (2004) 153–165 | Zbl | Numdam | MR | DOI
[7] , Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resources Res. 27 (1991) 699–708 | DOI
[8] W.E and , The Heterogeneous Multiscale Methods. Commun. Math. Sci. 1 (2003) 87–132 | Zbl | MR | DOI
[9] and . Multiscale Finite Element Methods – Theory and Applications. In Vol. 4 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer-Verlag, New York (2009) | Zbl | MR
[10] and , Asymptotic and numerical homogenization. Acta Numer. 17 (2008) 147–190 | Zbl | MR | DOI
[11] and , A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189 | Zbl | MR | DOI
[12] , , and , The variational multiscale method – a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166 (1998) 3–24 | Zbl | MR | DOI
[13] , and , Homogenization of Differential Operators and Integral Functionals. Springer–Verlag, Berlin Heidelberg (1994) | MR | DOI
[14] and , Numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model. Simul. 14 (2016) 1017–1036 | Zbl | MR | DOI
[15] Some numerical approaches for “weakly” random homogenization. Numerical mathematics and advanced applications. In Proc. of ENUMATH 2009, of Lect. Notes Comput. Sci. Eng. Springer (2010) | Zbl
[16] , and , Approximation grossière d’un problème elliptique à coefficients hautement oscillants (Coarse approximation of an elliptic problem with highly oscillatory coefficients) C. R. Acad. Sci. Paris, Série I 351 (2013) 265–270 | Zbl | MR | DOI
[17] and , Localization of elliptic multiscale problems. Math. Comput. 83 (2014) 2583–2603 | Zbl | MR | DOI
[18] and , Boundary value problems with rapidly oscillating random coefficients, In Proc. Colloq. on Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory 10 (1981) 835–873 | Zbl | MR
[19] , The general theory of homogenization – A personalized introduction. In Vol. 7 of Lect. Notes of the Unione Matematica Italiana. Springer–Verlag, Berlin Heidelberg (2010) | Zbl | MR | DOI
Cité par Sources :






