We study an one dimensional model where an interface is the stationary solution of a mesoscopic non local evolution equation which has been derived by a microscopic stochastic spin system. Deviations from this evolution equation can be quantified by obtaining the large deviations cost functional from the underlying stochastic process. For such a functional, derived in a companion paper, we investigate the optimal way for a macroscopic interface to move from an initial to a final position distant by R within fixed time T. We find that for small values of R∕T the interface moves with a constant speed, while for larger values there appear nucleations of the other phase ahead of the front.
Accepté le :
DOI : 10.1051/cocv/2017021
Keywords: Action minimization, large deviations functional, sharp-interface limit, non-local Allen−Cahn equation, nucleation
Birmpa, Panagiota 1 ; Tsagkarogiannis, Dimitrios 1
@article{COCV_2018__24_2_765_0,
author = {Birmpa, Panagiota and Tsagkarogiannis, Dimitrios},
title = {Action minimization and macroscopic interface motion under forced displacement},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {765--792},
year = {2018},
publisher = {EDP Sciences},
volume = {24},
number = {2},
doi = {10.1051/cocv/2017021},
zbl = {1404.82043},
mrnumber = {3816414},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2017021/}
}
TY - JOUR AU - Birmpa, Panagiota AU - Tsagkarogiannis, Dimitrios TI - Action minimization and macroscopic interface motion under forced displacement JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 765 EP - 792 VL - 24 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2017021/ DO - 10.1051/cocv/2017021 LA - en ID - COCV_2018__24_2_765_0 ER -
%0 Journal Article %A Birmpa, Panagiota %A Tsagkarogiannis, Dimitrios %T Action minimization and macroscopic interface motion under forced displacement %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 765-792 %V 24 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2017021/ %R 10.1051/cocv/2017021 %G en %F COCV_2018__24_2_765_0
Birmpa, Panagiota; Tsagkarogiannis, Dimitrios. Action minimization and macroscopic interface motion under forced displacement. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 765-792. doi: 10.1051/cocv/2017021
[1] , and , Energy levels of a non local functional. J. Math. Phys. 46 (2005) 083302. | Zbl | MR | DOI
[2] G. Bellettini, A. De Masi and E. Presutti, Small, energy controlled perturbations of non local evolution equations. In preparation (2004).
[3] , and , Tunnelling for nonlocal evolution equations. J. Nonlin. Math. Phys. 12 (2005) 50–63. | Zbl | MR | DOI
[4] L. Bertini, P. Buttà and A. Pisante, Stochastic Allen−Cahn equation with mobility. Preprint (2015). | arXiv | MR
[5] , and , Stochastic Allen−Cahn approximation of the mean curvature flow: large deviations upper bound. A. Arch. Rational Mech. Anal. 224 (2017) 659. | Zbl | MR | DOI
[6] , , , and , Macroscopic fluctuation theory. Rev. Mod. Phys. 87 (2015) 593. | MR | DOI
[7] L. Bertini, E. Presutti, B. Rüdiger and E. Saada, Dynamical fluctuations at the critical point: convergence to a nonlinear stochastic PDE. Teor. Veroyatnost. i Primenen. 38 (1993) 689–741, translation in Theory Probab. Appl. 38 (1993) 586–629. | Zbl | MR
[8] P. Birmpa, N. Dirr and D. Tsagkarogiannis, Large deviations for the macroscopic motion of an interface. preprint (2016). | MR
[9] , Nucleation for a long range magnetic model. Ann. Inst. Henri Poincaré – Probab. Statist. 23 (1987) 135–178. | Zbl | Numdam | MR
[10] and , Asymptotic dynamics, noncritical and critical fluctuations for a geometric long-range interacting model. Commun. Math. Phys. 118 (1988) 531–567. | Zbl | MR | DOI
[11] , and , Interface instability under forced displacements. Ann. Inst. Henri Poincaré – AN 7 (2006) 471–511. | Zbl | MR | DOI
[12] , and , Spectral properties of integral operators in problems of interface dynamics and metastability. Markov Process. Related Fields 4 (1998) 27–112. | Zbl | MR
[13] , , and , Glauber evolution with the Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity 7 (1994) 633–696. | Zbl | MR | DOI
[14] , , and , Stability of the interface in a model of phase separation. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 1013–1022. | Zbl | MR | DOI
[15] , , and , Uniqueness and global stability of the instanton in non local evolution equations. Rend. Mat. Appl. 14 (1994) 693–723. | Zbl | MR
[16] and , Minimum action method for the study of rare events. Commun. Pure. Appl. Math. LVII (2004) 0001–0020. | Zbl | MR
[17] and , Large fluctuations for a nonlinear heat equation with noise. J. Phys. A: Math. Gen. 15 (1982) 3025–3055. | Zbl | MR | DOI
[18] and , Random Perturbations of Dynamical Systems. Springer Verlag 260 (1984). | Zbl | MR | DOI
[19] and , Theory of dynamic critical phenomena. Rev. Mod. Phys. 49 (1977) 435–479. | DOI
[20] , , and , Action minimization and sharp-interface limits for the stochastic Allen−Cahn equation.Commun. Pure Appl. Math. 60 (2007) 393–438. | Zbl | MR | DOI
[21] , and , Sharp-interface limit of the Allen−Cahn action functional in one space dimension. Calc. Var. PDE 25 (2006) 503–534. | Zbl | MR | DOI
[22] and , Convergence of the two-dimensional dynamic Ising-Kac model to Φ42. Commun. Pure Appl. Math. onlinefirst (2014). | MR
[23] and , The Allen−Cahn action functional in higher dimensions, Interfaces Free Bound. 10 (2008) 45–78. | Zbl | MR | DOI
[24] , Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Springer (2000). | Zbl | MR
Cité par Sources :





