We study isometries in contact sub-pseudo-Riemannian geometry. In particular we give an upper bound on the dimension of the isometry group of a general sub-pseudo-Riemannian manifold and prove that the maximal dimension is attained for the left invariant structures on the Heisenberg group.
Accepté le :
DOI : 10.1051/cocv/2016072
Keywords: Contact structure, sub-Riemannian geometry, sub-Lorentzian geometry, Heisenberg group, isometry group, control-affine systems
Grochowski, Marek 1 ; Kryński, Wojciech 2
@article{COCV_2017__23_4_1751_0,
author = {Grochowski, Marek and Kry\'nski, Wojciech},
title = {On contact {sub-pseudo-Riemannian} isometries},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {1751--1765},
year = {2017},
publisher = {EDP Sciences},
volume = {23},
number = {4},
doi = {10.1051/cocv/2016072},
mrnumber = {3716939},
zbl = {1379.53044},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2016072/}
}
TY - JOUR AU - Grochowski, Marek AU - Kryński, Wojciech TI - On contact sub-pseudo-Riemannian isometries JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 1751 EP - 1765 VL - 23 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2016072/ DO - 10.1051/cocv/2016072 LA - en ID - COCV_2017__23_4_1751_0 ER -
%0 Journal Article %A Grochowski, Marek %A Kryński, Wojciech %T On contact sub-pseudo-Riemannian isometries %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 1751-1765 %V 23 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2016072/ %R 10.1051/cocv/2016072 %G en %F COCV_2017__23_4_1751_0
Grochowski, Marek; Kryński, Wojciech. On contact sub-pseudo-Riemannian isometries. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1751-1765. doi: 10.1051/cocv/2016072
, Exponential mappings for contact sub-Riemannian structures. J. Dynam. Control Syst. 2 (1996) 321–356. | Zbl | MR | DOI
A. Agrachev, El.-H. Chakir, El.-A. and J.P. Gauthier, Sub-Riemannian metrics on . In vol. 25 of Canadian Mathematical Society Conference Proceedings (1998). | Zbl | MR
and , Sub-Riemannian structures on 3D Lie groups. J. Dynam. Control Syst. 18 (2012) 21–44. | Zbl | MR | DOI
M. Gromov, Carnot-Carathéodory spaces seen from within. Sub-Riemannian geometry. In vol. 144 of Progr. Math. Birkhäuser, Basel (1996) 79–323. | Zbl | MR
, The structure of reachable sets for affine control systems induced by generalized Martinet sub-Lorentzian metrics. ESAIM: COCV 18 (2012) 1150–1177. | Zbl | Numdam | MR
, Remarks on global sub-Lorentzian geometry. Anal. Math. Phys. 3 (2013) 295–309. | Zbl | MR | DOI
and , Invariants of Contact sub-pseudo-Riemannian Structures and Einstein-Weyl Geometry. Radon Ser. Comput. Appl. Math. 18 (2016). | Zbl | MR
and , Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds. SIGMA 11 (2015) 031. | Zbl | MR
and , Sub-Riemannian and sub-Lorentzian geometry on and on its universal cover. J. Geom. Mech. 3 (2011) 225–260. | Zbl | MR | DOI
S. Kobayashi, Transformation groups in differential geometry. Springer-Verlag, New York, Heidelberg (1972). | Zbl | MR
and , Geodesics on H-type quaternion groups with sub-Lorentzian metric and their physical interpretation. Complex Anal. Oper. Theory 4 (2010) 589–618. | Zbl | MR | DOI
, Finite-dimensionality in Tanaka theory. Ann. Inst. Henri Poincaré Anal. Non Linéaire 28 (2011) 75–90. | Zbl | Numdam | MR | DOI
, Symmetries of filtered structures via filtered Lie equations. J. Geom. Phys. 85 (2014) 164–170. | Zbl | MR | DOI
and , Canonical forms for symmetric/skew-symmetric real matrix pairs under strict equivalence and congruence. Linear Algebra Appl. 406 (2005) 1–76. | Zbl | MR | DOI
R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications. In vol. 91 of Mathematical Surveys and Monographs. AMS (2006). | Zbl | MR
, On differential systems, graded Lie algebras and pseudogroups. J. Math. Kyoto Univ. 10 (1970) 1–82 | Zbl | MR
, Pencils of Complex and Real Symmetric and Skew Matrices. Linear Algebra Appl. 147 (1991) 323–371. | Zbl | MR | DOI
Cité par Sources :





