In this paper, we establish a result of Lagrangian controllability for a fluid at low Reynolds number, driven by the stationary Stokes equation. This amounts to the possibility of displacing a part of a fluid from one zone to another by suitably using a boundary control. This relies on a weak variant of the Runge–Walsh’s theorem (on approximation of harmonic functions) concerning the Stokes equation. We give two variants of this result, one of which we believe to be better adapted to numerical simulations.
Accepté le :
DOI : 10.1051/cocv/2016032
Keywords: Stokes system, controllability, Lagrangian controllability, Runge theorem
Glass, O. 1 ; Horsin, T. 2
@article{COCV_2016__22_4_1040_0,
author = {Glass, O. and Horsin, T.},
title = {Lagrangian controllability at low {Reynolds} number},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {1040--1053},
year = {2016},
publisher = {EDP Sciences},
volume = {22},
number = {4},
doi = {10.1051/cocv/2016032},
mrnumber = {3570493},
zbl = {1388.93020},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2016032/}
}
TY - JOUR AU - Glass, O. AU - Horsin, T. TI - Lagrangian controllability at low Reynolds number JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 1040 EP - 1053 VL - 22 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2016032/ DO - 10.1051/cocv/2016032 LA - en ID - COCV_2016__22_4_1040_0 ER -
%0 Journal Article %A Glass, O. %A Horsin, T. %T Lagrangian controllability at low Reynolds number %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 1040-1053 %V 22 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2016032/ %R 10.1051/cocv/2016032 %G en %F COCV_2016__22_4_1040_0
Glass, O.; Horsin, T. Lagrangian controllability at low Reynolds number. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1040-1053. doi: 10.1051/cocv/2016032
, and , Estimate near the boundary for the solutions of elliptic differential equations satisfying general boundary values i. Comm. Pure Appl. Math. 12 (1959) 623–727. | MR | Zbl | DOI
, and , Estimate near the boundary for the solutions of elliptic differential equations satisfying general boundary values ii. Comm. Pure Appl. Math. 17 (1964) 35–92. | MR | Zbl | DOI
and , Enhanced controllability of low reynolds number swimmers in the presence of a wall. Acta Appl. Math. 128 (2013) 153–179. | MR | Zbl | DOI
, and , Swimming at low Reynolds number at optimal strokes: An example. J. Nonlin. Sci. 3 (2008) 277–302. | MR | Zbl
and , Note sur le magnétisme de la pile de volta. Ann. Chim. Phys. (1820) 1222–1223.
and , Least-squares methods for the velocity-pressure-stress formulation of the stokes equations. Comp. Meth. Appl. Mech. Eng. 126 (1995) 267–287. | MR | Zbl | DOI
, and , Stability estimates for a Robin coefficient in the two-dimensional Stokes system. Math. Control Relat. Fields 3 (2013) 21–49. | MR | Zbl | DOI
F. Boyer and P. Fabrie, Eléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles. In vol. 52 of SMAI, Mathématiques et Applications. Springer-Verlag, Berlin, Heidelberg (2005). | MR | Zbl
, and , Analytic regularity for linear elliptic systems in polygons and polyhedra. Math. Models Methods Appl. Sci. 22 (2012) 1250015. | MR | Zbl | DOI
, Curves on -manifolds and isotopies. Acta Math. 115 (1966) 83–107. | MR | Zbl | DOI
and , Prolongement unique des solutions de l’equation de stokes. Commun. Partial Differ. Eq. 21 (1996) 573–596. | MR | Zbl | DOI
S.J. Gardiner, Harmonic approximation. Vol. 221 of London Mathematical Society, Lecture Note Series. Cambridge university press (1995). | MR | Zbl
and , Approximate lagrangian controllability for the 2-d Euler equations. Application to the control of the shape of vortex patch. J. Math. Pures Appl. 93 (2010) 61–90. | MR | Zbl | DOI
O. Glass and T. Horsin, Prescribing the motion of a set of particles in a 3d perfect fluid. Soumis (2011). | MR | Zbl
P.W. Gross and P.R. Kotiuga, Electromagnetic theory and computation: a topological approach. Vol. 48 of Mathematical Sciences Research Institute Publications. Cambridge University Press, Cambridge (2004). | MR | Zbl
and , Analytic regularity of stokes flow on polygonal domains in countably weighted sobolev spaces. J. Comput. Appl. Math. 190 (2006) 487–519. | MR | Zbl | DOI
E. Guyon, J.-P. Hulin and L. Petit, Hydrodynamique physique, 3ème édition. Savoirs actuels. EDP Sciences/CNRS Éditions, 3rd edition (2012).
S.G. Krantz and H.R. Parks, A Primer of Real Analytic Functions. Birkhäuser, Basel, Boston, Berlin (1992). | MR | Zbl
, Extension of diffeomorphisms that preserve volume. Funkcional. Anal. i Priložen. 5-2 (1971) 72–76. | MR | Zbl
and , Controllability of 3D low Reynolds number swimmers. ESAIM COCV 20 (2014) 236–268. | MR | Zbl | Numdam | DOI
C.B. Morrey, Multiple integrals in the calculus of variations. Classics in Mathematics. Reprint of the 1966 edition [MR0202511]. Springer-Verlag, Berlin (2008). | MR | Zbl
W. Rudin, Real and complex analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York, 2nd edition (1974). | MR | Zbl
J. San Martin, and , Théorie du mouvement non permanent des eaux, avec applications aux crues des rivières et à l’introduction des marées dans leur lit. Quart. Appl. Math. 65 (2007) 405–424. | MR | Zbl
R. Temam, Navier–Stokes Equations: Theory and numerical analysis. North-Holland Publications, North-Holland (1979). | Zbl
, The imbedding of manifolds in families of analytic manifolds. Ann. Math. 37-4 (1936) 865–878. | MR | Zbl | JFM | DOI
Cité par Sources :






