In this paper we study the quantitative isoperimetric inequality in the plane. We prove the existence of a set , different from a ball, which minimizes the ratio , where is the isoperimetric deficit and the Fraenkel asymmetry, giving a new proof of the quantitative isoperimetric inequality. Some new properties of the optimal set are also shown.
Accepté le :
DOI : 10.1051/cocv/2016002
Keywords: Isoperimetric inequality, quantitative isoperimetric inequality, isoperimetric deficit, Fraenkel asymmetry, rearrangement, shape derivative, optimality conditions
Bianchini, Chiara 1 ; Croce, Gisella 2 ; Henrot, Antoine 3
@article{COCV_2017__23_2_517_0,
author = {Bianchini, Chiara and Croce, Gisella and Henrot, Antoine},
title = {On the quantitative isoperimetric inequality in the plane},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {517--549},
year = {2017},
publisher = {EDP Sciences},
volume = {23},
number = {2},
doi = {10.1051/cocv/2016002},
zbl = {1456.49034},
mrnumber = {3608092},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2016002/}
}
TY - JOUR AU - Bianchini, Chiara AU - Croce, Gisella AU - Henrot, Antoine TI - On the quantitative isoperimetric inequality in the plane JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 517 EP - 549 VL - 23 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2016002/ DO - 10.1051/cocv/2016002 LA - en ID - COCV_2017__23_2_517_0 ER -
%0 Journal Article %A Bianchini, Chiara %A Croce, Gisella %A Henrot, Antoine %T On the quantitative isoperimetric inequality in the plane %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 517-549 %V 23 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2016002/ %R 10.1051/cocv/2016002 %G en %F COCV_2017__23_2_517_0
Bianchini, Chiara; Croce, Gisella; Henrot, Antoine. On the quantitative isoperimetric inequality in the plane. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 517-549. doi: 10.1051/cocv/2016002
, and , A sharp isoperimetric inequality in the plane involving Hausdorff distance. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 20 (2009) 397–412. | Zbl | MR | DOI
, and , A sharp isoperimetric inequality in the plane. J. Eur. Math. Soc. 13 (2011) 185–206. | Zbl | MR | DOI
, Isoperimetric deficit and convex plane sets of maximum translative discrepancy. Geom. Dedicata 43 (1992) 71–81. | Zbl | MR | DOI
, Three-dimensional Bonnesen type inequalities. Matematiche (Catania) 60 (2005) 425–431. | Zbl | MR
and , A selection principle for the sharp quantitative isoperimetric inequality. Arch. Ration. Mech. Anal. 206 (2012) 617–643. | Zbl | MR | DOI
and , Best constants for the isoperimetric inequality in quantitative form. J. Eur. Math. Soc. 15 (2013) 1101–1129. | Zbl | MR | DOI
, and , A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182 (2010) 167–211. | Zbl | MR | DOI
, The quantitative isoperimetric inequality and related topics. Bull. Math. Sci. 5 (2015) 517–607. | MR | Zbl | DOI
, and , The sharp quantitative isoperimetric inequality. Ann. Math. 168 (2008) 941–980. | Zbl | MR | DOI
and , A problem in the theory of subordination. J. Anal. Math. 60 (1993) 99–111. | Zbl | MR | DOI
, and , On asymmetry and capacity. J. Anal. Math. 56 (1991) 87–123. | Zbl | MR | DOI
A. Henrot and M. Pierre, Variation et Optimisation de forme, une analyse géométrique. Vol. 48 of Mathématiques et Applications. Springer (2005). | Zbl | MR
, , , and , An analytic proof of the planar quantitative isoperimetric inequality. C. R. Math. Acad. Sci. Paris 353 (2015) 589–593. | Zbl | MR | DOI
, Some methods for studying stability in isoperimetric type problems. Bull. Am. Math. Soc. 45 (2008) 367–408. | Zbl | MR | DOI
Cité par Sources :






