We prove existence of solutions for a class of singular elliptic problems with a general measure as source term whose model is
DOI : 10.1051/cocv/2015004
Keywords: Nonlinear elliptic equations, singular elliptic equations, measure data
Oliva, Francescantonio 1 ; Petitta, Francesco 1
@article{COCV_2016__22_1_289_0,
author = {Oliva, Francescantonio and Petitta, Francesco},
title = {On singular elliptic equations with measure sources},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {289--308},
year = {2016},
publisher = {EDP Sciences},
volume = {22},
number = {1},
doi = {10.1051/cocv/2015004},
zbl = {1337.35060},
mrnumber = {3489386},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2015004/}
}
TY - JOUR AU - Oliva, Francescantonio AU - Petitta, Francesco TI - On singular elliptic equations with measure sources JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 289 EP - 308 VL - 22 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2015004/ DO - 10.1051/cocv/2015004 LA - en ID - COCV_2016__22_1_289_0 ER -
%0 Journal Article %A Oliva, Francescantonio %A Petitta, Francesco %T On singular elliptic equations with measure sources %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 289-308 %V 22 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2015004/ %R 10.1051/cocv/2015004 %G en %F COCV_2016__22_1_289_0
Oliva, Francescantonio; Petitta, Francesco. On singular elliptic equations with measure sources. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 289-308. doi: 10.1051/cocv/2015004
, , , , and , Existence and nonexistence of solutions for singular quadratic quasilinear equations. J. Differ. Equ. 246 (2009) 4006–4042. | Zbl | MR | DOI
and , Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity. Nonlinear Analysis 95 (2014) 281–291. | Zbl | MR | DOI
, and , Bifurcation for quasilinear elliptic singular BVP. Commun. Partial Differ. Equ. 36 (2011) 670–692. | Zbl | MR | DOI
, , , , and , An theory of existence and uniqueness of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa 22 (1995) 240–273. | Zbl | MR | Numdam
, Dirichlet problems with singular and gradient quadratic lower order terms. ESAIM: COCV 14 (2008) 411–426. | Zbl | MR | Numdam
and , Some properties of solutions of some semilinear elliptic singular problems and applications to the G-convergence. Asymptotic Analysis 86 (2014) 1–15. | Zbl | MR | DOI
and , Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87 (1989) 149–169. | Zbl | MR | DOI
and , Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Analysis 19 (1992) 581–597. | Zbl | MR | DOI
and , Semilinear elliptic equations with singular nonlinearities. Calc. Var. Partial Differ. Equ. 37 (2010) 363–380. | Zbl | MR | DOI
, and , Existence of bounded solutions for nonlinear unilateral problems. Ann. Mat. Pura Appl. 152 (1988) 183–196. | Zbl | MR | DOI
and , Some simple nonlinear PDE’s without solutions. Bollettino dell’Unione Matematica Italiana Serie 8 (1998) 223–262. | Zbl | MR
H. Brezis, M. Marcus and A.C. Ponce, Nonlinear elliptic equations with measures revisited. Vol. 163 of Ann. Math. Stud. Princeton University Press NJ (2007) 55–110. | Zbl | MR
, Minimax methods for singular elliptic equations with an application to a jumping problem. J. Differ. Equ. 221 (2006) 210–223. | Zbl | MR | DOI
and , A variational approach to a class of singular semilinear elliptic equations. J. Convex Analysis 11 (2004) 147–162. | Zbl | MR
, and , Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities. J. Differ. Equ. 255 (2013) 4437–4447. | Zbl | MR | DOI
and , On a Dirichlet problem in bounded domains with singular nonlinearity. Discrete Contin. Dyn. Syst. 33 (2013) 4923–4944. | Zbl | MR | DOI
, and , On a dirichlet problem with a singular nonlinearity. Commun. Partial. Differ. Equ. 2 (1977) 193–222. | Zbl | MR | DOI
, , and , Renormalized solutions of elliptic equations with general measure data. Annali della Scuola Normale Superiore di Pisa 28 (1999) 741–808. | Zbl | MR | Numdam
, Nonlinear elliptic equations with singular nonlinearities. Asymptotic Anal. 84 (2013) 181–195. | Zbl | MR | DOI
D. Giachetti, P. J. Martínez-Aparicio and F. Murat, Elliptic equations with mild singularities: existence and homogenization. Preprint (2015). | arXiv | MR
D. Giachetti, P. J. Martínez-Aparicio and F. Murat, Homogenization of singular semilinear elliptic equations in domains with small holes (preprint).
, , S. Segura de Leon, A priori estimates for elliptic problems with a strongly singular gradient term and a general datum. Differ. Int. Equ. 26 (2013) 913–948. | Zbl | MR
and , On a singular nonlinear elliptic boundary-value problem. Proc. Amer. Math. Soc. 111 (1991) 721–730. | Zbl | MR | DOI
and , Quelques résultats de Višik sur les problémes elliptiques semilinéaires par les méthodes de Minty et Browder. Bull. Soc. Math. France 93 (1965) 97–107. | Zbl | MR | Numdam | DOI
and , The sub-supersolution method for weak solutions. Proc. Amer. Math. Soc. 136 (2008) 2429–2438. | Zbl | MR | DOI
A. C. Ponce, Selected problems on elliptic equations involving measures. Preprint (2014). | arXiv
, Pathological solutions of elliptic differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18 (1964) 385–387. | Zbl | MR | Numdam
, Le problème de Dirichlet pour les équations elliptiques du seconde ordre à coefficientes discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 189–258. | Zbl | MR | Numdam | DOI
and , The role of the power 3 for elliptic equations with negative exponents. Calc. Var. Partial Differ. Equ. 49 (2014) 909–922. | Zbl | MR | DOI
Cité par Sources :





