Let , be a bounded Lipschitz domain and . We prove the inequality
Keywords: Korn’s inequality, Lie-algebra decomposition, Poincaré’s inequality, Maxwell estimates, relaxed micromorphic model
Bauer, Sebastian 1 ; Neff, Patrizio 1 ; Pauly, Dirk 1 ; Starke, Gerhard 1
@article{COCV_2016__22_1_112_0,
author = {Bauer, Sebastian and Neff, Patrizio and Pauly, Dirk and Starke, Gerhard},
title = {Dev-Div- and {DevSym-DevCurl-inequalities} for incompatible square tensor fields with mixed boundary conditions},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {112--133},
year = {2016},
publisher = {EDP Sciences},
volume = {22},
number = {1},
doi = {10.1051/cocv/2014068},
zbl = {1337.35004},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2014068/}
}
TY - JOUR AU - Bauer, Sebastian AU - Neff, Patrizio AU - Pauly, Dirk AU - Starke, Gerhard TI - Dev-Div- and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 112 EP - 133 VL - 22 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2014068/ DO - 10.1051/cocv/2014068 LA - en ID - COCV_2016__22_1_112_0 ER -
%0 Journal Article %A Bauer, Sebastian %A Neff, Patrizio %A Pauly, Dirk %A Starke, Gerhard %T Dev-Div- and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 112-133 %V 22 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2014068/ %R 10.1051/cocv/2014068 %G en %F COCV_2016__22_1_112_0
Bauer, Sebastian; Neff, Patrizio; Pauly, Dirk; Starke, Gerhard. Dev-Div- and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 112-133. doi: 10.1051/cocv/2014068
R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).
, and , A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45 (1984) 1–22. | Zbl | DOI
D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Springer, Heidelberg (2013). | Zbl
and , First-order system least squares for the stress-displacement formulation: Linear elasticity. SIAM J. Numer. Anal. 41 (2003) 715–730. | Zbl | DOI
and , Least squares methods for linear elasticity. SIAM J. Numer. Anal. 42 (2004) 826–842. | Zbl | DOI
and , Mixed methods for stationary Navier-Stokes equations based on pseudostress-pressure-velocity formulation. Math. Comput. 81 (2012) 1903–1927. | Zbl | DOI
, and , Least squares methods for incompressible Newtonian fluid flow: Linear stationary problems. SIAM J. Numer. Anal. 42 (2004) 843–859. | Zbl | DOI
, , and , Mixed finite element methods for incompressible flow: Stationary Stokes equations. Numer. Methods Partial Differ. Equ. 26 (2010) 957–978. | Zbl | DOI
and , A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81 (1998) 187–209. | Zbl | DOI
, On Korn’s inequality. Chin. Ann. Math. B 31 (2010) 607–618. | Zbl | DOI
, Generalized Korn’s inequality and conformal Killing vectors. Calc. Var. Partial Differ. Equ. 25 (2006) 535–540. | Zbl | DOI
, and , A dual-mixed approximation method for a three-field model of a nonlinear generalized Stokes problem. Comput. Methods Appl. Mech. Engrg. 197 (2008) 2886–2900. | Zbl | DOI
and , An application of a new coercive inequality to variational problems studied in general relativity and in Cosserat elasticity giving the smoothness of minimizers. Arch. Math. (Basel) 93 (2009) 587–596. | Zbl | DOI
and , Some Poincaré-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient. Zap. Nauchn. sem. St.-Petersburg Odtel. Math. Inst. Steklov (POMI) 385 (2010) 224–234. | Zbl
, and , Analysis of a velocity-pressure-pseudostress formulation for the stationary Stokes equations. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1064–1079. | Zbl | DOI
, and , On the regularity of differential forms satisfying mixed boundary conditions in a class of Lipschitz domains. Indiana Univ. Math. J. 58 (2009) 2043–2071. | Zbl | DOI
, A compactness result for vector fields with divergence and curl in involving mixed boundary conditions. Appl. Anal. 66 (1997) 189–203. | Zbl | DOI
, First-order system least squares for generalized-Newtonian coupled Stokes-Darcy flow. Numer. Methods Partial Differ. Equ. 31 (2015) 1150–1173. | Zbl | DOI
and , First-order system least squares for coupled Stokes-Darcy flow. SIAM J. Numer. Anal. 49 (2011) 387–404. | Zbl | DOI
J. Nečas, Sur les normes équivalentes dans et sur la coercivité des formes formellement positives, in Équations aux derivées partielles. Les Presses de l’Université de Montréal (1967) 102–128.
and , Infinitesimal elastic-plastic Cosserat micropolar theory. Modelling and global existence in the rate independent case. Proc. Roy. Soc. Edinb. A 135 (2005) 1017–1039. | Zbl | DOI
and , Curl bounds Grad on . ESAIM: COCV 14 (2008) 148–159. | Zbl | Numdam
and , A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy. Z. Angew. Math. Mech. 89 (2009) 107–122. | Zbl | DOI
, , and , A numerical solution method for an infinitesimal elastic-plastic Cosserat model. M3AS Math. Mod. Meth. Appl. Sci. 17 (2007) 1211–1239. | Zbl | DOI
, and , Notes on strain gradient plasticity. Finite strain covariant modelling and global existence in the infinitesimal rate-independent case. M3AS Math. Mod. Meth. Appl. Sci. 19 (2009) 1–40. | Zbl
, and , On a canonical extension of Korn’s first inequality to H(Curl) motivated by gradient plasticity with plastic spin. C. R. Math. 349 (2011) 1251–1254. | Zbl | DOI
, and , Maxwell meets Korn: a new coercive inequality for tensor fields in with square-integrable exterior derivative. Math. Methods Appl. Sci. 35 (2012) 65–71. | Zbl | DOI
, , , and , A unifying perspective: the relaxed linear micromorphic continuum. Cont. Mech. Thermodyn. 26 (2014) 639–681. | Zbl | DOI
, and , Poincaré meets Korn via Maxwell: Extending Korn’s first inequality to incompatible tensor fields. J. Differ. Equ. 258 (2015) 1267–1302. | Zbl | DOI
, Counterexamples to Korn’s inequality with non-constant rotation coefficients. Math. Mech. Solids 16 (2011) 172–176. | Zbl | DOI
Y.G. Reshetnyak, Stability Theorems in Geometry and Analysis. Kluwer Academic Publishers, London (1994). | Zbl
, New Korn-type inequalities and regularity of solutions to linear elliptic systems and anisotropic variational problems involving the trace-free part of the symmetric gradient. Calc. Var. Partial Differ. Equ. 43 (2012) 147–172. | Zbl | DOI
H. Sohr, The Navier−Stokes Equations. Birkhäuser, Basel (2001). | Zbl
K. Yoshida, Functional Analysis. Springer-Verlag, Berlin, 6th edition (1980).
Cité par Sources :





