We prove the existence of a countable family of Delaunay type domains
Keywords: Overdetermined elliptic problems, homogeneous manifolds, bifurcation, Laplace–Beltrami operator, Delaunay surfaces
Morabito, Filippo 1, 2 ; Sicbaldi, Pieralberto 3
@article{COCV_2016__22_1_1_0,
author = {Morabito, Filippo and Sicbaldi, Pieralberto},
title = {Delaunay type domains for an overdetermined elliptic problem in $\mathrm{\mathbb{S}}^n \times{} \mathrm{\mathbb{R}}$ and $\mathbb{H}^{n} \times{} \mathbb{R}$},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {1--28},
year = {2016},
publisher = {EDP Sciences},
volume = {22},
number = {1},
doi = {10.1051/cocv/2014064},
zbl = {1336.58015},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2014064/}
}
TY - JOUR
AU - Morabito, Filippo
AU - Sicbaldi, Pieralberto
TI - Delaunay type domains for an overdetermined elliptic problem in $\mathrm{\mathbb{S}}^n \times{} \mathrm{\mathbb{R}}$ and $\mathbb{H}^{n} \times{} \mathbb{R}$
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2016
SP - 1
EP - 28
VL - 22
IS - 1
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/cocv/2014064/
DO - 10.1051/cocv/2014064
LA - en
ID - COCV_2016__22_1_1_0
ER -
%0 Journal Article
%A Morabito, Filippo
%A Sicbaldi, Pieralberto
%T Delaunay type domains for an overdetermined elliptic problem in $\mathrm{\mathbb{S}}^n \times{} \mathrm{\mathbb{R}}$ and $\mathbb{H}^{n} \times{} \mathbb{R}$
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 1-28
%V 22
%N 1
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2014064/
%R 10.1051/cocv/2014064
%G en
%F COCV_2016__22_1_1_0
Morabito, Filippo; Sicbaldi, Pieralberto. Delaunay type domains for an overdetermined elliptic problem in $\mathrm{\mathbb{S}}^n \times{} \mathrm{\mathbb{R}}$ and $\mathbb{H}^{n} \times{} \mathbb{R}$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 1-28. doi: 10.1051/cocv/2014064
and , A Hopf differential for constant mean curvature surfaces in and . Acta Math. 193 (2004) 141–174. | Zbl | DOI
, Uniqueness theorems for surfaces in the large. (Russian) Vestnik Leningrad Univ. Math. 11 (1956) 5–17.
and , Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981) 105–144. | Zbl
L. Bessières, G. Besson, M. Boileau, S. Maillot and J. Porti, Geometrisation of 3-manifolds. Vol. 13 of EMS Tracts Math. European Mathematical Society, Zurich (2010). | Zbl
, and , Monotonicity for elliptic equations in unbounded Lipschitz domains. Commun. Pure Appl. Math. 50 (1997) 1089–1111. | Zbl | DOI
I. Chavel, Eigenvalues in Riemannian geometry. Academic Press, Orlando, Florida (1984). | Zbl
, Sur la surface de révolution dont la courbure moyenne est constante. With a note appended by M. Sturm. J. Math. Pures Appl. Sér. 1 6 (1841) 309–320.
Digital Library of Mathematical Functions. Available on http://dlmf.nist.gov/
A. Erdély, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, vol. I. McGraw-Hill Book Company (1953). | Zbl
D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order. In Vol. 224 of A Series of Comprehensive Studies in Mathematics, Grundlehren der mathematischen Wissenschaften, 3rd edition. Springer-Verlag, Berlin-Heidelberg-New York (1977, 1983, 1998). | Zbl
, and , A note on some overdetermined problems. Pacific J. Math. 250 (2011) 319–334. | Zbl | DOI
M.A. Karlovitz, Some solutions to overdetermined boundary value problems on subsets of spheres. University of Maryland at College Park (1990).
T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, Berlin-Heidelberg-New York (1987). | Zbl
H. Kielhofer, Bifurcation Theory, An Introduction with Applications to PDEs. Appl. Math. Sci. 156 (2004). | Zbl
and , Serrin’s result for hyperbolic space and sphere. Duke Math. J. 91 (1998) 17–28. | Zbl | DOI
N.N. Lebedev, Special functions and their applications. Dover Publications (1972). | Zbl
and , The theory of minimal surfaces in . Comment. Math. Helv. 80 (2005) 811–858. | Zbl | DOI
and , Stable minimal surfaces in . J. Differ. Geom. 68 (2004) 515–534. | Zbl
, Symmetry and overdetermined boundary value problems. Forum Math. 3 (1991) 143–156. | Zbl | DOI
F. Olver, Asymptotics and special functions. AK Peters (1997). | Zbl
and , Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems. Indiana Univ. Math. J. 48 (1999) 1357–1394. | Zbl | DOI
G. Perelman, The entropy formula for the Ricci flow and its geometric applications. Preprint (2002). | arXiv | Zbl
G. Perelman, Ricci flow with surgery on three-manifolds. Preprint (2003). | arXiv | Zbl
G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. Preprint (2003) | arXiv | Zbl
P. Pucci and J. Serrin, The maximum principle. Progress in Nonlinear Differential Equations and Their Applications. Birkhauser, Basel (2007). | Zbl
and , Geometry and Topology for some overdetermined elliptic problems. J. Differ. Equ. 255 (2013) 951–977. | Zbl | DOI
and , Bifurcating extremal domains for the first eigenvalue of the Laplacian. Adv. Math. 229 (2012) 602–632. | Zbl | DOI
, A Symmetry Theorem in Potential Theory. Arch. Rational Mech. Anal. 43 (1971) 304–318. | Zbl | DOI
, New extremal domains for the first eigenvalue of the Laplacian in flat tori. Calc. Var. Partial Differ. Equ. 37 (2010) 329–344. | Zbl | DOI
J. Smoller, Shock Waves and Reaction-Diffusion Equations. In Vol. 258 of A Series of Comprehensive Studies in Mathematics, Grundlehren der mathematischen Wissenschaften, edition. Springer-Verlag, Berlin-Heidelberg-New York (1994). | Zbl
I.S. Sokolnikoff, Mathematical theory of elasticity. McGraw-Hill Book Company, Inc., New York-Toronto-London (1956). | Zbl
, Classification of the solutions to an overdetermined elliptic problem in the plane. Geom. Funct. Anal. 24 (2014) 690–720. | Zbl | DOI
Cité par Sources :






