We study the weak* lower semicontinuity of functionals of the form
where is a bounded open set, and �� is a constant-rank partial differential operator. The notion of ��-Young quasiconvexity, which is introduced here, provides a sufficient condition when is only lower semicontinuous. We also establish necessary conditions for weak* lower semicontinuity. Finally, we discuss the divergence and curl-free cases and, as an application, we characterise the strength set in the context of electrical resistivity.
DOI : 10.1051/cocv/2014058
Keywords: Supremal functionals, Γ-convergence, Lp-approximation, lower semicontinuity, 𝒜-quasiconvexity
Ansini, Nadia 1, 2 ; Prinari, Francesca 3
@article{COCV_2015__21_4_1053_0,
author = {Ansini, Nadia and Prinari, Francesca},
title = {On the lower semicontinuity of supremal functional under differential constraints},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {1053--1075},
year = {2015},
publisher = {EDP Sciences},
volume = {21},
number = {4},
doi = {10.1051/cocv/2014058},
mrnumber = {3395755},
zbl = {1336.49015},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2014058/}
}
TY - JOUR AU - Ansini, Nadia AU - Prinari, Francesca TI - On the lower semicontinuity of supremal functional under differential constraints JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 1053 EP - 1075 VL - 21 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2014058/ DO - 10.1051/cocv/2014058 LA - en ID - COCV_2015__21_4_1053_0 ER -
%0 Journal Article %A Ansini, Nadia %A Prinari, Francesca %T On the lower semicontinuity of supremal functional under differential constraints %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 1053-1075 %V 21 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2014058/ %R 10.1051/cocv/2014058 %G en %F COCV_2015__21_4_1053_0
Ansini, Nadia; Prinari, Francesca. On the lower semicontinuity of supremal functional under differential constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 4, pp. 1053-1075. doi: 10.1051/cocv/2014058
, and , The class of functionals which can be represented by a supremum. J. Convex Anal. 9 (2002) 225–236. | MR | Zbl
and , -convergence of Functionals on Divergence Free Fields. ESAIM: COCV 13 (2007) 809–828. | MR | Zbl | Numdam
and , Power-law approximation under differential constraint. SIAM J. Math. Anal. 46 (2014) 1085–1115. | MR | Zbl | DOI
J.M. Ball, A version of the fundamental theorem for Young measures. PDE’s and Continuum Models of Phase Transitions. Edited by M. Rascle, D. Serre and M. Slemrod. In vol. 344 of Lect. Notes Phys. Springer-Verlag, Berlin (1989) 207–215. | MR | Zbl
and , Calculus of Variation in . Appl. Math. Optim. 35 (1997) 237–263. | MR | Zbl
, and , Hopf-Lax type formula for . J. Differ. Eq. 126 (1996) 48–61. | MR | Zbl | DOI
, and , Lower semicontinuity of functionals. Ann. Inst. Henri Poincaré 4 (2001) 495–517. | MR | Zbl | Numdam | DOI
and , -convergence of power-law functionals, variational principles in and applications. SIAM J. Math. Anal. 39 (2008) 1550–1576. | MR | Zbl | DOI
and , Intégral normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973) 129–184. | MR | Zbl | Numdam | DOI
A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998). | MR | Zbl
, and , ��-Quasiconvexity: Relaxation and Homogenization. ESAIM: COCV 5 (2000) 539–577. | MR | Zbl | Numdam
and , Supremal representation of functionals. Appl. Math. Optim. 52 (2005) 129–141. | MR | Zbl | DOI
, and , -convergence and absolute minimizers for supremal functionals. ESAIM: COCV 10 (2004) 14–27. | MR | Zbl | Numdam
G. Dal Maso, An Introduction to -convergence. Birkhäuser, Boston (1993). | MR | Zbl
and , ��-Quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal. 30 (1999) 1355–1390. | MR | Zbl | DOI
, and , Dielectric breakdown: optimal bounds. Proc. Roy. Soc. London A 457 (2001) 2317–2335. | MR | Zbl | DOI
, Compacité par compensation: condition necessaire et suffisante de continuité faible sous une hypothése de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8 (1981) 68–102. | MR | Zbl | Numdam
, Semicontinuity and supremal representation in the Calculus of Variations. Appl. Math. Optim. 54 (2008) 111–145. | MR | Zbl | DOI
, Semicontinuity and relaxation of -functionals. Adv. Calc. Var. 2 (2009), 43–71. | MR | Zbl | DOI
F. Prinari, On the necessary condition for the lower semicontinuity of supremal functionals. In preparation.
and , Existence of minimizers for non-level convex supremal functionals. SIAM J. Control Optim. 52 (2014) 3341–3370. | MR | Zbl | DOI
, Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium. Edited by R. Knops. Longman, Harlow. Pitman Res. Notes Math. Ser. 39 (1979) 136–212. | MR | Zbl
Cité par Sources :






