Here we prove the existence of solutions to nonlinear differential inclusion problems with closed-loop control where the operator is bilinear with respect to the control and the state in reflexive, separable Banach spaces denoted and , respectively. The operator is nonlinear in , and given a positive real number , the set-valued map is defined in . Without making any assumptions about the convexity of , its values are taken to be non-empty closed, decomposable subsets of .
DOI : 10.1051/cocv/2014055
Keywords: Nonlinear infinite system, differential inclusion, bilinear control, closed-loop control, feedback law, a priori estimates, Willett and Wong’s lemma
Clérin, Jean-Marc 1
@article{COCV_2015__21_4_989_0,
author = {Cl\'erin, Jean-Marc},
title = {Existence of solutions to bilinear problems with a closed-loop control},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {989--1001},
year = {2015},
publisher = {EDP Sciences},
volume = {21},
number = {4},
doi = {10.1051/cocv/2014055},
mrnumber = {3395752},
zbl = {1326.93062},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2014055/}
}
TY - JOUR AU - Clérin, Jean-Marc TI - Existence of solutions to bilinear problems with a closed-loop control JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 989 EP - 1001 VL - 21 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2014055/ DO - 10.1051/cocv/2014055 LA - en ID - COCV_2015__21_4_989_0 ER -
%0 Journal Article %A Clérin, Jean-Marc %T Existence of solutions to bilinear problems with a closed-loop control %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 989-1001 %V 21 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2014055/ %R 10.1051/cocv/2014055 %G en %F COCV_2015__21_4_989_0
Clérin, Jean-Marc. Existence of solutions to bilinear problems with a closed-loop control. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 4, pp. 989-1001. doi: 10.1051/cocv/2014055
J.-P. Aubin and A. Cellina, Differential inclusions, Set-valued maps and viability theory. Vol. 264 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1984). | MR | Zbl
J.-P. Aubin and H. Frankowska, Set-valued analysis. Birkhäuser, Boston (2008). | MR | Zbl
V. Barbu and Th. Precupanu, Convexity and optimization in Banach spaces. Vol. 10 of Math. Appl. (East European Series). D. Reidel Publishing Co., Dordrecht, romanian edition (1986). | MR | Zbl
and , Extensions and selections of maps with decomposable values. Studia Math. 90 (1988) 69–86. | MR | Zbl | DOI
H. Brézis, Analyse fonctionnelle. Théorie et applications. [Theory and applications]. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris (1983). | MR | Zbl
C. Castaing and M. Valadier, Convex analysis and measurable multifunctions. Vol. 580 of Lect. Notes Math. Springer-Verlag, Berlin (1977). | MR | Zbl
F. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). | MR | Zbl
, Équations d’état bien posées en contrôle bilinéaire (well-posed state equations in bilinear control). Rev. Roumaine Math. Pures Appl. 56 (2011) 115–136. | MR | Zbl
, Analyse de sensibilité d’un problème de contrôle optimal bilinéaire. Ann. Mat. Blaise Pascal 19 (2012) 177–196. | MR | Zbl | Numdam | DOI
, and , On the existence of optimal controls for nonlinear infinite-dimensional systems. Czechoslovak Math. J. 48 (1998) 291–312. | MR | Zbl | DOI
, Continuous selections for a class of nonconvex multivalued maps. Studia Math. 76 (1983) 163–174. | MR | Zbl | DOI
I.M. Gel’fand and N.Ya. Vilenkin, Generalized functions. Vol. 4 of Applications of harmonic analysis. Translated by Amiel Feinstein. Academic Press, New York (1964). | MR
S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis: Theory. Vol. 419 of Math. Appl. Springer (1997). | MR | Zbl
, Controllability of the semilinear parabolic equation governed by a multiplicative control in the reaction term: a qualitative approach. SIAM J. Control Optim. 41 (2003) 1886–1900. | MR | Zbl | DOI
J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod Gauthier-Villars (1969). | Zbl | MR
, Continuous selections 1. Ann. Math. 63 (1956) 361–382. | MR | Zbl | DOI
, Compact sets in the space . Ann. Mat. Pura Appl. 146 (1987) 65–96. | MR | Zbl | DOI
and , Vibration of a master plate with attached masses using modal sampling method. J. Acoust. Soc. Am. 96 (1994) 235–245. | DOI
and , On the discrete analogues of some generalizations of Gronwall’s inequality. Monatsh. Math. 69 (1965) 362–367. | MR | Zbl | DOI
Y.-Y. Yu, Vibrations of elastic plates. Springer (1995).
Cité par Sources :





