For a Hamiltonian and a map , we consider the supremal functional
| (1) |
| (2) |
Keywords: Quasiconformal maps, distortion, dilation, aronsson PDE, vector-valued calculus of variations inL∞, ∞-Harmonic maps
Katzourakis, Nikos 1
@article{COCV_2015__21_2_561_0,
author = {Katzourakis, Nikos},
title = {Optimal $\infty{}${-Quasiconformal} {Immersions}},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {561--582},
year = {2015},
publisher = {EDP Sciences},
volume = {21},
number = {2},
doi = {10.1051/cocv/2014038},
zbl = {1317.30029},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2014038/}
}
TY - JOUR
AU - Katzourakis, Nikos
TI - Optimal $\infty{}$-Quasiconformal Immersions
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2015
SP - 561
EP - 582
VL - 21
IS - 2
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/cocv/2014038/
DO - 10.1051/cocv/2014038
LA - en
ID - COCV_2015__21_2_561_0
ER -
%0 Journal Article
%A Katzourakis, Nikos
%T Optimal $\infty{}$-Quasiconformal Immersions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 561-582
%V 21
%N 2
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2014038/
%R 10.1051/cocv/2014038
%G en
%F COCV_2015__21_2_561_0
Katzourakis, Nikos. Optimal $\infty{}$-Quasiconformal Immersions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 561-582. doi: 10.1051/cocv/2014038
, On quasiconformal mappings. J. Anal. Math. 3 (1954) 1-58; J. Anal. Math. 3 (1954) 207–208. | Zbl
, Quasiconformal deformations and mappings in . J. Anal. Math. 30 (1976) 74–97. | Zbl | DOI
, Extension of functions satisfying Lipschitz conditions. Arkiv für Mat. 6 (1967) 551–561. | Zbl | DOI
, On the partial differential equation . Arkiv für Mat. 7 (1968) 395–425. | Zbl
, and , Deformations of annuli with smallest mean distortion. Arch. Ration. Mech. Anal. 195 (2010) 899–921. | Zbl | DOI
, , and , Extremal mappings of finite distortion. Proc. London Math. Soc. 91 (2005) 655–702. | Zbl | DOI
L. Bers, Quasiconformal mappings and Teichmuüllers theorem. Analytic Functions. Princeton Univ. Press, Princeton, NJ (1960) 89–119. | Zbl
and , An Aronsson type approach to extremal quasiconformal mappings. J. Differ. Eqs. 253 (2012) 851–877. | Zbl | DOI
M.G. Crandall, A visit with the -Laplacian. in Calculus of Variations and Non-Linear Partial Differential Equations. In vol. 1927 of Springer Lect. Notes Math. CIME, Cetraro Italy (2005). | Zbl
F.W. Gehring, Quasiconformal mappings in Euclidean spaces, in vol. 2 of Handbook of complex analysis: geometric function theory. Elsevier, Amsterdam (2005) 1–29. | Zbl
, Extremal quasiconformal mappings with prescribed boundary values. Trans. Amer. Math. Soc. 138 (1969) 399−406. | Zbl | DOI
, Variational Problems for Maps and the Aronsson PDE System. J. Differ. Eqs. 253 (2012) 2123–2139. | Zbl | DOI
, -Minimal Submanifolds. Proc. Amer. Math. Soc. 142 (2014) 2797–2811. | Zbl | DOI
, The Subelliptic -Laplace System on Carnot−Carathéodory Spaces. Adv. Nonlinear Anal. 2 (2013) 213–233. | Zbl | DOI
, Explicit -Harmonic Maps whose Interfaces have Junctions and Corners. C. R. Acad. Sci. Paris, Ser. I 351 (2013) 677–680. | Zbl | DOI
, Nonuniqueness in Vector-Valued Calculus of Variations in and Some Linear Elliptic Systems, Commun. Pure Appl. Anal. 14 (2015) 313–327. | Zbl | DOI
, On the Structure of -Harmonic Maps, Commun. Partial Differ. Eqs. 39 (2014) 2091–2124. | Zbl | DOI
R. Narasimhan, Analysis on real nad complex manifolds. Advanced Stud. Pure Math. North-Holland, Masson and CIE, Paris (1968). | Zbl
, Extremal quasiconformal mappings. Results Math. 10 (1986) 168–210. | Zbl | DOI
, Extremale quasikonforme Abbildungen und quadratische Differentiale. Abh. Preuss. Akad. Wiss. Math.-Nat. Kl. 1939 (1940) 197. | JFM | Zbl
J. Väisälä, Lectures on -dimensional quasiconformal mappings. Vol. 229 of Lect. Notes Math. Springer-Verlag, Berlin (1971). | Zbl
Cité par Sources :






