We consider Kolmogorov-type equations on a rectangle domain , that combine diffusion in variable and transport in variable at speed , , with Dirichlet boundary conditions in . We study the null controllability of this equation with a distributed control as source term, localized on a subset of . When the control acts on a horizontal strip with , then the system is null controllable in any time when , and only in large time when (see [K. Beauchard, Math. Control Signals Syst. 26 (2014) 145–176]). In this article, we prove that, when , the system is not null controllable (whatever is) in this configuration. This is due to the diffusion weakening produced by the first order term. When the control acts on a vertical strip with ω̅1⊂��, we investigate the null controllability on a toy model, where is replaced by , and is an open subset of . As the original system, this toy model satisfies the controllability properties listed above. We prove that, for and for appropriate domains , then null controllability does not hold (whatever is), when the control acts on a vertical strip with ω̅1⊂��. Thus, a geometric control condition is required for the null controllability of this toy model. This indicates that a geometric control condition may be necessary for the original model too.
Keywords: Null controllability, degenerate parabolic equation, hypoelliptic operator, geometric control condition
Beauchard, Karine 1 ; Helffer, Bernard 2 ; Henry, Raphael 2 ; Robbiano, Luc 3
@article{COCV_2015__21_2_487_0,
author = {Beauchard, Karine and Helffer, Bernard and Henry, Raphael and Robbiano, Luc},
title = {Degenerate parabolic operators of {Kolmogorov} type with a geometric control condition},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {487--512},
year = {2015},
publisher = {EDP Sciences},
volume = {21},
number = {2},
doi = {10.1051/cocv/2014035},
zbl = {1311.93042},
mrnumber = {3348409},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2014035/}
}
TY - JOUR AU - Beauchard, Karine AU - Helffer, Bernard AU - Henry, Raphael AU - Robbiano, Luc TI - Degenerate parabolic operators of Kolmogorov type with a geometric control condition JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 487 EP - 512 VL - 21 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2014035/ DO - 10.1051/cocv/2014035 LA - en ID - COCV_2015__21_2_487_0 ER -
%0 Journal Article %A Beauchard, Karine %A Helffer, Bernard %A Henry, Raphael %A Robbiano, Luc %T Degenerate parabolic operators of Kolmogorov type with a geometric control condition %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 487-512 %V 21 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2014035/ %R 10.1051/cocv/2014035 %G en %F COCV_2015__21_2_487_0
Beauchard, Karine; Helffer, Bernard; Henry, Raphael; Robbiano, Luc. Degenerate parabolic operators of Kolmogorov type with a geometric control condition. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 487-512. doi: 10.1051/cocv/2014035
M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas graphs and mathematical tables. Edited by Milton. New York, Dover (1972). | Zbl | MR
, , and , Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equ. 6 (2006) 161–204. | Zbl | MR | DOI
and , Uniqueness and nonuniqueness of the Cauchy problem for hyperbolic operators with double characteristics. Commun. Partial Differ. Equ. 6 (1981) 799–828. | Zbl | DOI
, The stability of the normal state of superconductors in the presence of electric currents. Siam J. Math. Anal. 40 (2008) 824–850. | Zbl | DOI
and , Global stability of the normal state of superconductors in the presence of a strong electric current. Commun. Math. Phys. 330 (2014) 1021–1094. | Zbl | DOI
, and , Superconductivity near the normal state in a half-plane under the action of a perpendicular electric current and an induced magnetic field II: The large conductivity limit. SIAM J. Math. Anal. 44 (2012) 3671–3733. | Zbl | DOI
, and , Superconductivity near the normal state in a half-plane under the action of a perpendicular electric current and an induced magnetic field. Trans. Amer. Math. Soc. 365 (2013) 1183–1217. | Zbl | DOI
, and , Superconductivity near the normal state under the action of electric currents and induced magnetic fields in . Commun. Math. Phys. 300 (2010) 147–184. | Zbl | DOI
, Null controllability of Kolmogorov-type equations. Math. Control Signals Syst. 26 (2014) 145–176. | Zbl | DOI
, and . Some controllability results for the 2D Grushin equations. J. Eur. Math. Soc. 16 (2014) 67–101.
, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier 19 (1969) 277–304. | Zbl | Numdam | DOI
H. Brézis, Analyse Fonctionnelle, Théorie et Applications. Masson, Paris (1983). | Zbl
and , Feedback stabilization of a boundary layer equation, part2: Nonhomogeneous state equations and numerical simulations. Appl. Math. Res. Express 2009 (2010) 87–122. | Zbl
and , Feedback stabilization of a boundary layer equation, part 1. ESAIM:COCV 17 (2011) 506–551. | Zbl | Numdam
and , Controllability of 1-D coupled degenerate parabolic equations. Electron. J. Differ. Equ. 73 (2009) 21. | Zbl
, and , Null controllability of degenerate parabolic operators with drift. Netw. Heterog. Media 2 (2007) 695–715. | Zbl | DOI
, and , Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form. J. Evol. Equ. 8 (2008) 583–616. | Zbl | DOI
, and , Persistent regional null controllability for a class of degenerate parabolic equations. Commun. Pure Appl. Anal. 3 (2004) 607–635. | Zbl | DOI
, and , Null controllability of degenerate heat equations. Adv. Differ. Equ. 10 (2005) 153–190. | Zbl
, and , Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control Optim. 47 (2008) 1–19. | Zbl | DOI
, and , Carleman estimates and null controllability for boundary-degenerate parabolic operators. C. R. Math. Acad. Sci. Paris 347 (2009) 147–152. | Zbl | DOI
, Wild spectral behaviour of anharmonic oscillators. Bull. London Math. Soc. 32 (2000) 432–438. | Zbl | DOI
S. Didelot, Etude d’une perturbation singulière elliptique dégénérée. Thèse de doctorat, Reims (1999).
and , Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Ration. Mech. Anal. 43 (1971) 272–292. | Zbl | DOI
and , Carleman estimates for degenerate parabolic equations with first order terms and applications. C. R. Math. Acad. Sci. Paris 348 (2010) 391–396. | Zbl | DOI
A.V. Fursikov and O.Y. Imanuvilov, Controllability of evolution equations. Vol. 34 of Lect. Notes Series. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul (1996). | Zbl
B. Helffer, Spectral Theory and its Applications. Cambridge University Press (2013). | Zbl
and , Propriétés asymptotiques du spectre d’opérateurs pseudo-différentiels sur . Commun. Partial Differ. Eq. 7 (1982) 795–882. | Zbl
B. Helffer and J. Sjöstrand, From resolvent bounds to semigroup bounds, Appendix of a course by Sjöstrand. Proc. of the Evian Conference (2009). Preprint arXiv:1001.4171
R. Henry, On the semi-classical analysis of Schrödinger operators with purely imaginary electric potentials in a bounded domain. Preprint arXiv:1405.6183
, Boundary controllability of parabolic equations. Uspekhi. Mat. Nauk 48 (1993) 211–212. | Zbl
, Controllability of parabolic equations. Mat. Sb. 186 (1995) 109–132. | Zbl
T. Kato, Perturbation Theory for Linear operators. Springer-Verlag, Berlin New-York (1966). | Zbl
and , Contrôle exact de l’équation de la chaleur. Commun. Partial Differ. Eq. 20 (1995) 335–356. | Zbl | DOI
and , On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM:COCV 18 (2012) 712–747. | Zbl | Numdam
and , Carleman estimates for one-dimensional degenerate heat equations. J. Evol. Equ. 6 (2006) 325–362. | Zbl | DOI
, and , Regional null controllability of a linearized Crocco type equation. SIAM J. Control Optim. 42 (2003) 709–728. | Zbl | DOI
and , Localization of laplacian eigenfunctions in circular and elliptical domains. SIAM J. Appl. Math. 73 780–803. | Zbl | DOI
O.A. Oleinik and V.N. Samokhin, Mathematical Models in Boundary Layer Theory. In vol. 15 of Appl. Math. Math. Comput. Chapman Hall CRC, Boca Raton, London, New York (1999). | Zbl
A. Pazy, Semigroups of linear operators and applications to partial differential equations. Appl. Math. Sci. Springer Verlag, New-York (1983). | Zbl
, A complete study of the pseudo-spectrum for the rotated harmonic oscillator. J. London Math. Soc. 73 (2006) 745–761. | Zbl | DOI
Y. Sibuya, Global theory of a second order linear ordinary differential equation with a polynomial coefficient. Amsterdam, North-Holland (1975). | Zbl
, An inequality involving Bessel functions of argument nearly equal to their orders. Proc. Amer. Math. Soc. 4 (1953) 858–859. | Zbl | DOI
and , Counting nodal lines wich touch the boundary of an analytic domain. J. Differ. Geometry 81 (2009) 649–686. | Zbl | DOI
Cité par Sources :






