We consider a wave problem posed in a bounded open interval of , where the coefficients, the initial conditions and the right-hand side are highly oscillating, periodic in the space variable and almost periodic in the time one. Our purpose is to find not only the corresponding limit equation but a corrector, i.e. a strong approximation in the topology, which for the wave equation is known to be non-local. In a previous paper we have studied this problem in the whole , here we consider the case of a bounded domain in dimension one. Thus the novelty in this paper is the analysis of the boundary conditions.
DOI : 10.1051/cocv/2014034
Keywords: Wave equation, highly oscillating coefficients, homogenization, corrector, boundary conditions
Casado-Díaz, Juan 1 ; Couce-Calvo, Julio 1 ; Maestre, Faustino 1 ; Martín-Gómez, José D. 1
@article{COCV_2015__21_2_465_0,
author = {Casado-D{\'\i}az, Juan and Couce-Calvo, Julio and Maestre, Faustino and Mart{\'\i}n-G\'omez, Jos\'e D.},
title = {A corrector for a wave problem with periodic coefficients in a {1D} bounded domain},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {465--486},
year = {2015},
publisher = {EDP Sciences},
volume = {21},
number = {2},
doi = {10.1051/cocv/2014034},
zbl = {1320.35041},
mrnumber = {3348408},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2014034/}
}
TY - JOUR AU - Casado-Díaz, Juan AU - Couce-Calvo, Julio AU - Maestre, Faustino AU - Martín-Gómez, José D. TI - A corrector for a wave problem with periodic coefficients in a 1D bounded domain JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 465 EP - 486 VL - 21 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2014034/ DO - 10.1051/cocv/2014034 LA - en ID - COCV_2015__21_2_465_0 ER -
%0 Journal Article %A Casado-Díaz, Juan %A Couce-Calvo, Julio %A Maestre, Faustino %A Martín-Gómez, José D. %T A corrector for a wave problem with periodic coefficients in a 1D bounded domain %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 465-486 %V 21 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2014034/ %R 10.1051/cocv/2014034 %G en %F COCV_2015__21_2_465_0
Casado-Díaz, Juan; Couce-Calvo, Julio; Maestre, Faustino; Martín-Gómez, José D. A corrector for a wave problem with periodic coefficients in a 1D bounded domain. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 465-486. doi: 10.1051/cocv/2014034
, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. | Zbl | MR | DOI
G. Allaire and L. Friz, Localization of high-frequence waves propagating in a locally periodic medium. In vol. 140A, Proc. of Roy. Soc. Edinburgh (2010) 897–926. | Zbl | MR
, and , Diffractive behavior of the wave equation in periodic media: weak convergence analysis. Ann. Mat. Pura Appl. 188 (2009) 561–589. | Zbl | MR | DOI
A. Bensoussan, J.L. Lions and G. Papanicolau, Asymptotic analysis for periodic structures. North Holland, Amsterdam (1978). | Zbl | MR
, and , Correctors for the homogenization of the wave and heat equations. J. Math. Pures Appl. 71 (1992) 197–231. | Zbl | MR
and , A two scale model for the periodic homogenization of the wave equation. J. Math. Pure Appl. 93 (2010) 474–517. | Zbl | MR | DOI
and , A general compactness result and its application the two-scale convergence of almost periodic functions. C. R. Acad. Sci. Paris I 323 (1996) 329–334. | Zbl | MR
and , The two-scale convergence method applied to generalized Besicovitch spaces. Proc. Roy. Soc. London A 458 (2002) 2925–2946. | Zbl | MR | DOI
, , and , Homogenization and corrector for the wave equation with discontinuos coefficients in time. J. Math. Anal. Appl. 379 (2011) 664–681. | Zbl | MR | DOI
, , and , Homogenization and correctors for the wave equation with periodic coefficients. Math. Models Methods Appl. Sci. 24 (2014) 1343–1388. | Zbl | MR | DOI
and , On the convergence of solutions of hyperbolic equations. Commun. Partial Differ. Eq. 3 (1978) 77–103. | Zbl | MR | DOI
and , Oscillations and energy densities in the wave equation. Commun. Partial Differ. Eq. 17 (1992) 1785–1865. | Zbl | MR | DOI
F. Murat, H-convergence. Séminaire d’Analyse Fonctionnelle et Numérique, 1977-78. Université d’Alger; F. Murat, L. Tartar. H-convergence. Topics in the Mathematical Modelling of Composite Materials. In vol. 31 of Progr. Nonlin. Differ. Eq. Appl., edited by L. Cherkaev and R.V. Kohn. Birkaüser, Boston (1998) 21–43. | MR | Zbl
, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. | Zbl | MR | DOI
, Homogenization structures and applications I. Z. Anal. Anwen. 22 (2003) 73–107. | Zbl | MR | DOI
, and , Reiterated ergodic algebras and applications. Commun. Math. Phys. 300 (2010) 835–876. | Zbl | MR | DOI
, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1968) 571–597. | Zbl | MR | Numdam
L. Tartar, The general theory of the homogenization. A personalized introduction. Springer, Berlin Heidelberger (2009). | MR | Zbl
Cité par Sources :






