We consider the Landau−de Gennes variational problem on a bounded, two dimensional domain, subject to Dirichlet smooth boundary conditions. We prove that minimizers are maximally biaxial near the singularities, that is, their biaxiality parameter reaches the maximum value . Moreover, we discuss the convergence of minimizers in the vanishing elastic constant limit. Our asymptotic analysis is performed in a general setting, which recovers the Landau−de Gennes problem as a specific case.
Keywords: Landau−de Gennes model, Q-tensor, convergence, biaxiality
Canevari, Giacomo 1
@article{COCV_2015__21_1_101_0,
author = {Canevari, Giacomo},
title = {Biaxiality in the asymptotic analysis of a {2D} {Landau\ensuremath{-}de} {Gennes} model for liquid crystals},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {101--137},
year = {2015},
publisher = {EDP Sciences},
volume = {21},
number = {1},
doi = {10.1051/cocv/2014025},
mrnumber = {3348417},
zbl = {1311.35209},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2014025/}
}
TY - JOUR AU - Canevari, Giacomo TI - Biaxiality in the asymptotic analysis of a 2D Landau−de Gennes model for liquid crystals JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 101 EP - 137 VL - 21 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2014025/ DO - 10.1051/cocv/2014025 LA - en ID - COCV_2015__21_1_101_0 ER -
%0 Journal Article %A Canevari, Giacomo %T Biaxiality in the asymptotic analysis of a 2D Landau−de Gennes model for liquid crystals %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 101-137 %V 21 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2014025/ %R 10.1051/cocv/2014025 %G en %F COCV_2015__21_1_101_0
Canevari, Giacomo. Biaxiality in the asymptotic analysis of a 2D Landau−de Gennes model for liquid crystals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 1, pp. 101-137. doi: 10.1051/cocv/2014025
, and , Biaxial nematic phase in bent-core thermotropic mesogens. Phys. Rev. Lett. 92 (2004) 145506. | DOI
and , Nematic liquid crystals: from Maier–Saupe to a continuum theory. Mol. Cryst. Liq. Cryst. 525 (2010) 1–11. | DOI
and , Orientable and non–orientable line field models for uniaxial nematic liquid crystals. Mol. Cryst. Liq. Cryst. 495 (2008) 573–585.
F. Bethuel, Variational Methods for Ginzburg−Landau equations, in Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996). Vol. 1713 of Lect. Notes Math. Springer, Berlin (1999). | MR | Zbl
, and , Asymptotics for the minimization of a Ginzburg–Landau functional. Cal. Var. Partial Differ. Equ. 1 (1993) 123–148. | MR | Zbl | DOI
F. Bethuel, H. Brezis and F. Hélein, Ginzburg–Landau Vortices. Birkhäuser, Basel and Boston (1994). | MR | Zbl
F. Bethuel and T. Rivière, A minimization problem related to superconductivity. Ann. Institut Henri Poincaré, Anal. Non Lin. (1995) 243–303. | MR | Zbl | Numdam
, Partition hypergroups. Amer. J. Math. 6 (1940) 599–612. | MR | JFM | DOI
and , Existence and partial regularity results for the heat flow for harmonic maps. Math. Z. Math. Z. 201 (1989) 83–103. | MR | Zbl | DOI
D. Chiron, Étude mathématique de modèles issus de la physique de la matière condensée. PhD thesis, Université Paris VI, France (2004).
, On the multigroups of complete conjugate sets of elements of a group. C.R. (Doklady) Acad. Sci. URSS (N.S.) 49 (1946) 315–317. | MR | Zbl
G. Di Fratta, J.M. Robbins, V. Slastikov and A. Zarnescu, Profiles of point defects in two dimensions in Landau−de Gennes theory. Preprint (2014) arXiv:1403.2566.
and , On the local instability of radial hedgehog configurations in nematic liquid crystals under Landau–de Gennes free-energy models. Phys. Rev. E 59 (1999) 563–567. | DOI
and , On minimizers of the Landau–de Gennes energy functional on planar domains. Arch. Ration. Mech. Anal. 213 (2014) 447–490. | MR | Zbl | DOI
, and , Existence and partial regularity of static liquid crystal configurations. Commun. Math. Phys. 105 (1986) 547–570. | MR | Zbl | DOI
and , Symmetry of uniaxial global Landau–de Gennes minimizers in the theory of nematic liquid crystals. J. Math. Anal. 44 (2012) 3217–3241. | MR | Zbl
, , and , Stability of the vortex defect in the Landau-de Gennes theory for nematic liquid crystals. C.R. Math. Acad. Sci. Paris 351 (2013) 533–537. | MR | Zbl | DOI
and , Universal fine structure of nematic hedgehogs. J. Phys. A 34 (2001) 829–838. | MR | Zbl | DOI
, and , Biaxial torus around nematic point defects. Phys. Rew. E 60 (1999) 1858–1866. | DOI
X. Lamy, Uniaxial symmetry in nematic liquid crystals. Preprint (2014) arXiv:1402.1058. | MR | Numdam
, Convergence of minimizers for the -Dirichlet integral. Math. Z. 213 (1993) 449–456. | MR | Zbl | DOI
, , and , Thermotropic biaxial nematic liquid crystals. Phys. Rev. Lett. 92 (2004) 145505. | DOI
, Equilibrium order parameters of liquid crystals in the Landau–de Gennes theory. Eur. J. Appl. Math. 21 (2010) 181–203. | MR | Zbl | DOI
and , The Landau−de Gennes theory of nematic liquid crystals: The Oseen–Frank limit and beyond. Arch. Ration. Mech. Anal. 196 (2010) 227–280. | MR | Zbl | DOI
, The topological theory of defects in ordered media. Rev. Modern Phys. 51 (1979) 591–648. | MR | Zbl | DOI
, The problem of Plateau on a Riemannian manifold. Ann. Math. 49 (1948) 807–851. | MR | Zbl | DOI
R. Moser, Partial Regularity for Harmonic Maps and Related Problems. World Scientific Publishing, Singapore (2005). | MR | Zbl
N.J. Mottram and C. Newton, Introduction to Q-tensor theory. Research report, Department of Mathematics, University of Strathclyde (2004).
A. Quarteroni, R. Sacco and F. Saleri, Numer. Math. Springer-Verlag, New York (2000). | MR
and , The existence of minimal immersions of 2-spheres. Ann. Math. 113 (1981) 1–24. | MR | Zbl | DOI
, Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152 (1998) 379–403. Erratum. Ibidem 171 (2000) 233. | MR | Zbl | DOI
R. Schoen, Analytic aspects of the harmonic map problem, in Seminar on nonlinear partial differential equations, Berkeley, Calif., 1983. Math. Sci. Res. Inst. Publ. Springer, New York (1984). | MR | Zbl
and , A regularity theory for harmonic maps. J. Differ. Geometry 17 (1982) 307–335. | MR | Zbl | DOI
and , Defect core structure in nematic liquid crystals. Phys. Rev. 59 (1987) 2582–2584.
, and , Alignment tensor versus director: Description of defects in nematic liquid crystals. Phys. Rev. E 52 (1995) 718–712. | DOI
, On the asymptotic behaviour of the Ginzburg–Landau model in 2 dimensions. J. Differ. Int. Eq. 7 (1994) 1613–1324. Erratum. Ibidem 8 (1995) 224. | MR | Zbl
Cité par Sources :






