This paper deals with the existence of the shape derivative of the Cheeger constant of a bounded domain . We prove that if admits a unique Cheeger set, then the shape derivative of exists, and we provide an explicit formula. A counter-example shows that the shape derivative may not exist without the uniqueness assumption.
DOI : 10.1051/cocv/2014018
Keywords: Shape derivative, CHEEGER constant, 1-Laplacian
Parini, Enea 1 ; Saintier, Nicolas 2, 3
@article{COCV_2015__21_2_348_0,
author = {Parini, Enea and Saintier, Nicolas},
title = {Shape derivative of the {Cheeger} constant},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {348--358},
year = {2015},
publisher = {EDP Sciences},
volume = {21},
number = {2},
doi = {10.1051/cocv/2014018},
mrnumber = {3348401},
zbl = {1315.49018},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2014018/}
}
TY - JOUR AU - Parini, Enea AU - Saintier, Nicolas TI - Shape derivative of the Cheeger constant JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 348 EP - 358 VL - 21 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2014018/ DO - 10.1051/cocv/2014018 LA - en ID - COCV_2015__21_2_348_0 ER -
%0 Journal Article %A Parini, Enea %A Saintier, Nicolas %T Shape derivative of the Cheeger constant %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 348-358 %V 21 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2014018/ %R 10.1051/cocv/2014018 %G en %F COCV_2015__21_2_348_0
Parini, Enea; Saintier, Nicolas. Shape derivative of the Cheeger constant. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 348-358. doi: 10.1051/cocv/2014018
and , Uniqueness of the Cheeger set of a convex body. Nonlin. Anal. 70 (2009) 32–44. | MR | Zbl | DOI
L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press (2000). | MR | Zbl
and , On a weighted total variation minimization problem. J. Funct. Anal. 250 (2007) 214–226. | MR | Zbl | DOI
V. Caselles, A. Chambolle and M. Novaga, Some remarks on uniqueness and regularity of Cheeger sets, Rendiconti del Seminario Matematico della Università di Padova 123 (2010) 191–202. | MR | Zbl | Numdam
J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis: A symposium in honor of Salomon Bochner (1970) 195–199. | MR | Zbl
, Functions locally almost 1-harmonic. Appl. Anal. 83 (2004) 865–896. | MR | Zbl | DOI
, , and , Steklov eigenvalues for the -Laplacian. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 17 (2006) 199–210. | MR | Zbl | DOI
and , On the perturbation of eigenvalues for the p-Laplacian. C.R. Acad. Sci. Paris 332 (2001) 893–898. | MR | Zbl
E. Giusti, Minimal surfaces and functions of bounded variation. In vol. 80 of Monogr. Math. Birkhäuser Verlag, Basel (1984). | MR | Zbl
and , Stability and perturbations of the domain for the first eigenvalue of the 1-Laplacian. Arch. Math. 86 (2006) 340–351. | MR | Zbl | DOI
A. Henrot and M. Pierre, Variation et optimisation de formes. Springer (2005). | MR
and , Isoperimetric estimates for the first eigenvalue of the -Laplace operator and the Cheeger constant. Comment. Math. Univ. Carolin. 44 (2003) 659–667. | MR | Zbl
and , Characterization of Cheeger sets for convex subsets of the plane. Pacific J. Math. 225 (2006) 103–118. | MR | Zbl | DOI
and , Dirichlet problems for the 1-Laplace operator, including the eigenvalue problem. Commun. Contemp. Math. 9 (2007) 1–29. | MR | Zbl | DOI
and , The Cheeger constant of curved strips. Pacific J. Math. 254 (2011) 309–333. | MR | Zbl | DOI
P.D. Lamberti, A differentiability result for the first eigenvalue of the -Laplacian upon domain perturbation, Nonlinear analysis and Applications: to V. Lakshmikantham on his 80th birthday. Vol. 1, 2. Kluwer Acad. Publ., Dordrecht (2003) 741–754. | MR | Zbl
, , and , The dependence of the first eigenvalue of the -Laplacian with respect to the domain, Glasg. Math. J. 56 (2014) 241–249. | MR | Zbl | DOI
, An introduction to the Cheeger problem. Surveys Math. Appl. 6 (2011) 9–22. | MR | Zbl
J.D. Rossi and N. Saintier, On the 1st eigenvalue of the -Laplacian with Neumann boundary conditions, To appear in Houston J. | MR
, Estimates of the best Sobolev constant of the embedding of into and related shape optimization problems. Nonlinear Anal. 69 (2008) 2479–2491. | MR | Zbl | DOI
and , Area minimizing sets subject to a volume constraint in a convex set. J. Geom. Anal. 7 (1997) 653–677. | MR | Zbl | DOI
Cité par Sources :





