We prove Hölder regularity of the gradient, up to the boundary for solutions of some fully-nonlinear, degenerate elliptic equations, with degeneracy coming from the gradient.
Keywords: regularity, fully nonlinear equations, simplicity of the first nonlinear eigenvalue
@article{COCV_2014__20_4_1009_0,
author = {Birindelli, I. and Demengel, F.},
title = {$\mathcal {C}^{1,\beta }$ regularity for {Dirichlet} problems associated to fully nonlinear degenerate elliptic equations},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {1009--1024},
year = {2014},
publisher = {EDP Sciences},
volume = {20},
number = {4},
doi = {10.1051/cocv/2014005},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2014005/}
}
TY - JOUR
AU - Birindelli, I.
AU - Demengel, F.
TI - $\mathcal {C}^{1,\beta }$ regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2014
SP - 1009
EP - 1024
VL - 20
IS - 4
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/cocv/2014005/
DO - 10.1051/cocv/2014005
LA - en
ID - COCV_2014__20_4_1009_0
ER -
%0 Journal Article
%A Birindelli, I.
%A Demengel, F.
%T $\mathcal {C}^{1,\beta }$ regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 1009-1024
%V 20
%N 4
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2014005/
%R 10.1051/cocv/2014005
%G en
%F COCV_2014__20_4_1009_0
Birindelli, I.; Demengel, F. $\mathcal {C}^{1,\beta }$ regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 4, pp. 1009-1024. doi: 10.1051/cocv/2014005
[1] , and , Optimal gradient continuity for degenerate elliptic equations. Preprint arXiv:1206.4089.
[2] , and , Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations. J. Eur. Math. Soc. 13 (2011) 1-26. | Zbl | MR
[3] and , Comparison principle and Liouville type results for singular fully nonlinear operators. Ann. Fac. Sci Toulouse Math. 13 (2004) 261-287. | Zbl | MR | Numdam
[4] and , Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Commun. Pure Appl. Anal. 6 (2007) 335-366. | Zbl | MR
[5] and , Regularity and uniqueness of the first eigenfunction for singular fully non linear operators. J. Differ. Eqs. 249 (2010) 1089-1110. | Zbl | MR
[6] and , Regularity results for radial solutions of degenerate elliptic fully non linear equations. Nonlinear Anal. 75 (2012) 6237-6249. | Zbl | MR
[7] and , Regularity for viscosity solutions of fully nonlinear equations F(D2u) = 0. Topological Meth. Nonlinear Anal. 6 (1995) 31-48. | Zbl | MR
[8] , Interior a Priori Estimates for Solutions of Fully Nonlinear Equations. Ann. Math. Second Ser. 130 (1989) 189-213. | Zbl | MR
[9] and , Fully-nonlinear equations Colloquium Publications. Amer. Math. Soc. Providence, RI 43 (1995). | Zbl | MR
[10] , and , Users guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1-67. | Zbl | MR
[11] , Classical Solutions of Fully Nonlinear, Convex, Second-Order Elliptic Equations. Commun. Pure Appl. Math. 25 (1982) 333-363. | Zbl | MR
[12] and , Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin (2001). | Zbl | MR
[13] , Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate fully non-linear elliptic equations. J. Differ. Eqs. 250 (2011) 1555-1574. | Zbl | MR
[14] and , C1,α regularity of solutions of degenerate fully non-linear elliptic equations. Adv. Math. 233 (2013) 196-206. | Zbl | MR
[15] and , Estimates on elliptic equations that hold only where the gradient is large. Preprint arxiv:1306.2429v2.
[16] and , Viscosity solutions of Fully-Nonlinear Second Order Elliptic Partial Differential Equations. J. Differ. Eqs. 83 (1990) 26-78. | Zbl | MR
[17] , The Neumann problem for singular fully nonlinear operators. J. Math. Pures Appl. 90 (2008) 286-311. | Zbl | MR
[18] and , Boundary regularity for viscosity solutions of fully nonlinear elliptic equations. Preprint arXiv:1306.6672v1. | MR
[19] , W2,p and W1,p-Estimates at the Boundary for Solutions of Fully Nonlinear, Uniformly Elliptic Equations. J. Anal. Appl. 28 (2009) 129-164. | Zbl | MR
[20] , On regularity and existence of viscosity solutions of nonlinear second order, elliptic equations. In Partial differential equations and the calculus of variations. II, vol. 2 of Progr. Nonlinear Differ. Eqs. Appl. Birkhauser Boston, Boston, MA (1989) 939-957. | Zbl | MR
Cité par Sources :






