In this note we prove compactness for the Cahn-Hilliard functional without assuming coercivity of the multi-well potential.
Keywords: singular perturbations, gamma-convergence, compactness
@article{COCV_2014__20_2_517_0,
author = {Leoni, Giovanni},
title = {A remark on the compactness for the {Cahn-Hilliard} functional},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {517--523},
year = {2014},
publisher = {EDP Sciences},
volume = {20},
number = {2},
doi = {10.1051/cocv/2013073},
mrnumber = {3264214},
zbl = {1286.49014},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2013073/}
}
TY - JOUR AU - Leoni, Giovanni TI - A remark on the compactness for the Cahn-Hilliard functional JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2014 SP - 517 EP - 523 VL - 20 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2013073/ DO - 10.1051/cocv/2013073 LA - en ID - COCV_2014__20_2_517_0 ER -
%0 Journal Article %A Leoni, Giovanni %T A remark on the compactness for the Cahn-Hilliard functional %J ESAIM: Control, Optimisation and Calculus of Variations %D 2014 %P 517-523 %V 20 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2013073/ %R 10.1051/cocv/2013073 %G en %F COCV_2014__20_2_517_0
Leoni, Giovanni. A remark on the compactness for the Cahn-Hilliard functional. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 2, pp. 517-523. doi: 10.1051/cocv/2013073
[1] , , and , An extension theorem from connected sets, and homogenization in general periodic domains. Nonlinear Anal. 18 (1992) 481-496. | Zbl | MR
[2] , Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids. Ann. Inst. Henri Poincaré Anal. Non Linéaire 7 (1990) 67-90. | Zbl | MR | Numdam
[3] , Gamma-convergence for beginners, vol. 22 of Oxford Lect. Ser. Math. Appl. Oxford University Press, New York (2002). | Zbl | MR
[4] and , The gradient theory of phase transitions for systems with two potential wells. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 89-102. | Zbl | MR
[5] , Some results and conjectures in the gradient theory of phase transitions. IMA, preprint 156 (1985). | Zbl | MR
[6] , A first course in Sobolev spaces, vol. 105 of Graduate Stud. Math. American Mathematical Society (AMS), Providence, RI (2009). | Zbl | MR
[7] and , Un esempio di Γ-convergenza. (Italian). Boll. Un. Mat. Ital. B 14 (1977) 285-299. | Zbl | MR
[8] , The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123-142. | Zbl | MR
[9] , The effect of a singular perturbation on nonconvex variational problems. Arch. Rational Mech. Anal. 101 (1988) 209-260. | Zbl | MR
Cité par Sources :






