We consider the shape optimization problem , where is the one-dimensional Hausdorff measure and is an admissible class of one-dimensional sets connecting some prescribed set of points . The cost functional is the Dirichlet energy of defined through the Sobolev functions on vanishing on the points . We analyze the existence of a solution in both the families of connected sets and of metric graphs. At the end, several explicit examples are discussed.
Keywords: shape optimization, rectifiable sets, metric graphs, quantum graphs, Dirichlet energy
@article{COCV_2014__20_1_1_0,
author = {Buttazzo, Giuseppe and Ruffini, Berardo and Velichkov, Bozhidar},
title = {Shape optimization problems for metric graphs},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {1--22},
year = {2014},
publisher = {EDP Sciences},
volume = {20},
number = {1},
doi = {10.1051/cocv/2013050},
mrnumber = {3182688},
zbl = {1286.49050},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2013050/}
}
TY - JOUR AU - Buttazzo, Giuseppe AU - Ruffini, Berardo AU - Velichkov, Bozhidar TI - Shape optimization problems for metric graphs JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2014 SP - 1 EP - 22 VL - 20 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2013050/ DO - 10.1051/cocv/2013050 LA - en ID - COCV_2014__20_1_1_0 ER -
%0 Journal Article %A Buttazzo, Giuseppe %A Ruffini, Berardo %A Velichkov, Bozhidar %T Shape optimization problems for metric graphs %J ESAIM: Control, Optimisation and Calculus of Variations %D 2014 %P 1-22 %V 20 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2013050/ %R 10.1051/cocv/2013050 %G en %F COCV_2014__20_1_1_0
Buttazzo, Giuseppe; Ruffini, Berardo; Velichkov, Bozhidar. Shape optimization problems for metric graphs. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 1, pp. 1-22. doi: 10.1051/cocv/2013050
[1] , and , Functions of bounded variation and free discontinuity problems. Oxford Math. Monogr. Clarendon Press, Oxford (2000). | Zbl | MR
[2] and , Topics on Analysis in Metric Spaces. Oxford Lect. Ser. Math. Appl. Oxford University Press, Oxford (2004) | Zbl | MR
[3] , Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9 (1999) 428-517. | Zbl | MR
[4] , Extremal properties of eigenvalues for a metric graph. Ann. Inst. Fourier 55 (2005) 199-211. | Zbl | MR | Numdam
[5] and , Quantum graphs: Applications to quantum chaos and universal spectral statistics. Adv. Phys. 55 (2006) 527-625.
[6] , Quantum graphs: an introduction and a brief survey, in Analysis on graphs and its applications. AMS Proc. Symp. Pure. Math. 77 (2008) 291-312. | Zbl | MR
[7] , Sets of Finite Perimeter and Geometric Variational Problems. Cambridge University Press, Cambridge (2012). | Zbl | MR
Cité par Sources :






