The parabolic equations driven by linearly multiplicative Gaussian noise are stabilizable in probability by linear feedback controllers with support in a suitably chosen open subset of the domain. This procedure extends to Navier - Stokes equations with multiplicative noise. The exact controllability is also discussed.
Keywords: stochastic equation, brownian motion, Navier − Stokes equation, feedback controller
@article{COCV_2013__19_4_1055_0,
author = {Barbu, Viorel},
title = {Note on the internal stabilization of stochastic parabolic equations with linearly multiplicative gaussian noise},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {1055--1063},
year = {2013},
publisher = {EDP Sciences},
volume = {19},
number = {4},
doi = {10.1051/cocv/2012044},
mrnumber = {3182680},
zbl = {1283.35062},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2012044/}
}
TY - JOUR AU - Barbu, Viorel TI - Note on the internal stabilization of stochastic parabolic equations with linearly multiplicative gaussian noise JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 1055 EP - 1063 VL - 19 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2012044/ DO - 10.1051/cocv/2012044 LA - en ID - COCV_2013__19_4_1055_0 ER -
%0 Journal Article %A Barbu, Viorel %T Note on the internal stabilization of stochastic parabolic equations with linearly multiplicative gaussian noise %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 1055-1063 %V 19 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2012044/ %R 10.1051/cocv/2012044 %G en %F COCV_2013__19_4_1055_0
Barbu, Viorel. Note on the internal stabilization of stochastic parabolic equations with linearly multiplicative gaussian noise. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 4, pp. 1055-1063. doi: 10.1051/cocv/2012044
[1] , Internal stabilization of diffusion equation. Nonlinear Stud. 8 (2001) 193-202.
[2] , Controllability of parabolic and Navier − Stokes equations. Sci. Math. Japon. 56 (2002) 143-211. | MR
[3] , Stabilization of Navier − Stokes Flows, Communication and Control Engineering. Springer, London (2011). | MR
[4] and , Internal stabilizability of the Navier-Stokes equations. Syst. Control Lett. 48 (2003) 161-167. | MR
[5] , and , Carleman estimates and controllability of linear stochastic heat equations. Appl. Math. Optimiz. 47 (2003) 1197-1209. | MR
[6] , and , Internal exponential stabilization to a nonstationary solution for 3 − D Navier − Stokes equations. SIAM J. Control Optim. 49 (2011) 1454-1478. | MR
[7] and , Internal stabilization of Navier-Stokes equations with finite-dimensional controllers. Indiana Univ. Math. J. 53 (2004) 1443-1494. | MR
[8] and , Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge (1996). | MR
[9] , Some results on the controllability of forward stochastic heat equations with control on the drift. J. Funct. Anal. 260 (2011) 832-851. | MR
[10] and , Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (2008). | MR
[11] , Approximate controllability for linear stochastic differential equations in infinite dimensions. Appl. Math. Optim. 53 (2009) 105-132. | MR
[12] , On exact controllability of the Navier-Stokes equations. ESAIM: COCV 3 (1998) 97-131. | MR | Numdam
[13] and , Theory of Martingales. Kluwer Academic, Dordrecht (1989). | MR
[14] and , Null controllability for forward and backward stochastic parabolic equations. SIAM J. Control Optim. 48 (2009) 2191-2216. | MR
Cité par Sources :






