We consider a multi-polaron model obtained by coupling the many-body Schrödinger equation for N interacting electrons with the energy functional of a mean-field crystal with a localized defect, obtaining a highly non linear many-body problem. The physical picture is that the electrons constitute a charge defect in an otherwise perfect periodic crystal. A remarkable feature of such a system is the possibility to form a bound state of electrons via their interaction with the polarizable background. We prove first that a single polaron always binds, i.e. the energy functional has a minimizer for N = 1. Then we discuss the case of multi-polarons containing N ≥ 2 electrons. We show that their existence is guaranteed when certain quantized binding inequalities of HVZ type are satisfied.
Keywords: polaron, quantum crystal, binding inequalities, hvz theorem, choquard-pekar equation
@article{COCV_2013__19_3_629_0,
author = {Lewin, Mathieu and Rougerie, Nicolas},
title = {On the binding of polarons in a mean-field quantum crystal},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {629--656},
year = {2013},
publisher = {EDP Sciences},
volume = {19},
number = {3},
doi = {10.1051/cocv/2012025},
mrnumber = {3092354},
zbl = {1291.35248},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2012025/}
}
TY - JOUR AU - Lewin, Mathieu AU - Rougerie, Nicolas TI - On the binding of polarons in a mean-field quantum crystal JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 629 EP - 656 VL - 19 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2012025/ DO - 10.1051/cocv/2012025 LA - en ID - COCV_2013__19_3_629_0 ER -
%0 Journal Article %A Lewin, Mathieu %A Rougerie, Nicolas %T On the binding of polarons in a mean-field quantum crystal %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 629-656 %V 19 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2012025/ %R 10.1051/cocv/2012025 %G en %F COCV_2013__19_3_629_0
Lewin, Mathieu; Rougerie, Nicolas. On the binding of polarons in a mean-field quantum crystal. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 3, pp. 629-656. doi: 10.1051/cocv/2012025
[1] and , Advances in Polaron Physics. Springer Series in Solid-State Sciences, Springer (2009).
[2] , and , A new approach to the modelling of local defects in crystals: the reduced Hartree-Fock case. Commun. Math. Phys. 281 (2008) 129-177. | Zbl | MR
[3] , and , Non-perturbative embedding of local defects in crystalline materials. J. Phys. Condens. Matter 20 (2008) 294213.
[4] and , The dielectric permittivity of crystals in the reduced Hartree-Fock approximation. Arch. Ration. Mech. Anal. 197 (2010) 139-177. | Zbl | MR
[5] , and , On the thermodynamic limit for Hartree-Fock type models. Ann. Inst. Henri Poincaré Anal. Non Linéaire 18 (2001) 687-760. | Zbl | MR | Numdam
[6] , , and , Bi-polaron and N-polaron binding energies. Phys. Rev. Lett. 104 (2010) 210402.
[7] , , and , Stability and absence of binding for multi-polaron systems. Publ. Math. Inst. Hautes Études Sci. 113 (2011) 39-67. | Zbl | MR | Numdam
[8] , Theory of Electrical Breakdown in Ionic Crystals. Proc. of R. Soc. London A 160 (1937) 230-241. | Zbl
[9] , Interaction of electrons with lattice vibrations. Proc. of R. Soc. London A 215 (1952) 291-298. | Zbl
[10] and , Bounds on the minimal energy of translation invariant n-polaron systems. Commun. Math. Phys. 297 (2010) 283-297. | Zbl | MR
[11] , and , Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics. Arch. Ration. Mech. Anal. 192 (2009) 453-499. | Zbl | MR
[12] , On the spectra of Schrödinger multiparticle Hamiltonians. Helv. Phys. Acta 39 (1966) 451-462. | Zbl | MR
[13] , Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260 (2011) 3535-3595. | Zbl | MR
[14] and , Derivation of Pekar's Polarons from a Microscopic Model of Quantum Crystals (2011). | Zbl
[15] , Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud. Appl. Math. 57 (1977) 93-105. | Zbl | MR
[16] and , Analysis, in Graduate Studies in Mathematics, 2nd edition, Vol. 14. AMS, Providence, RI. (2001). | Zbl | MR
[17] and , Exact ground state energy of the strong-coupling polaron. Commun. Math. Phys. 183 (1997) 511-519. | Zbl | MR
[18] , The concentration-compactness principle in the calculus of variations. The locally compact case, Part I. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1 (1984) 109-149. | Zbl | MR | Numdam
[19] , The concentration-compactness principle in the calculus of variations. The locally compact case, Part II. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1 (1984) 223-283. | Zbl | MR | Numdam
[20] and , The bipolaron in the strong coupling limit. Ann. Henri Poincaré 8 (2007) 1333-1370. | Zbl | MR
[21] , Untersuchungen fiber die Elektronen Theorie der Kristalle. Berlin, Akademie-Verlag (1954). | Zbl
[22] , Research in electron theory of crystals. Tech. Report AEC-tr-5575. United States Atomic Energy Commission, Washington, DC (1963).
[23] and , Theory of F centers. Zh. Eksp. Teor. Fys. 21 (1951) 1218-1222.
[24] and , Methods of Modern Mathematical Physics. I. Functional analysis. Academic Press (1972). | Zbl | MR
[25] , Trace ideals and their applications, in Lect. Note Ser., Vol. 35. London Mathematical Society. Cambridge University Press, Cambridge (1979). | Zbl | MR
[26] , Theory of finite systems of particles. I. The Green function. Mat.-Fys. Skr. Danske Vid. Selsk. 2 (1964). | Zbl | MR
[27] , Discussion of the spectrum of Schrödinger operators for systems of many particles. In Russian. Trudy Moskovskogo matematiceskogo obscestva 9 (1960) 81-120. | Zbl
Cité par Sources :






