We compute the Γ-limit of a sequence of non-local integral functionals depending on a regularization of the gradient term by means of a convolution kernel. In particular, as Γ-limit, we obtain free discontinuity functionals with linear growth and with anisotropic surface energy density.
Keywords: free discontinuities, Γ-convergence, anisotropy
@article{COCV_2013__19_2_486_0,
author = {Lussardi, Luca and Magni, Annibale},
title = {$\Gamma $-limits of convolution functionals},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {486--515},
year = {2013},
publisher = {EDP Sciences},
volume = {19},
number = {2},
doi = {10.1051/cocv/2012018},
zbl = {1263.49010},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2012018/}
}
TY - JOUR AU - Lussardi, Luca AU - Magni, Annibale TI - $\Gamma $-limits of convolution functionals JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 486 EP - 515 VL - 19 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2012018/ DO - 10.1051/cocv/2012018 LA - en ID - COCV_2013__19_2_486_0 ER -
%0 Journal Article %A Lussardi, Luca %A Magni, Annibale %T $\Gamma $-limits of convolution functionals %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 486-515 %V 19 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2012018/ %R 10.1051/cocv/2012018 %G en %F COCV_2013__19_2_486_0
Lussardi, Luca; Magni, Annibale. $\Gamma $-limits of convolution functionals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 2, pp. 486-515. doi: 10.1051/cocv/2012018
[1] and , Free discontinuity problems generated by singular perturbation : the n-dimensional case. Proc. R. Soc. Edinb. Sect. A 130 (2000) 449-469. | Zbl | MR
[2] , , and , Free-discontinuity problems generated by singular perturbation. Proc. R. Soc. Edinburgh Sect. A 6 (1998) 1115-1129. | Zbl | MR
[3] and , Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commut. Pure Appl. Math. XLIII (1990) 999-1036. | Zbl | MR
[4] and , On the approximation of free discontinuity problems. Boll. Unione Mat. Ital. B (7) VI (1992) 105-123. | Zbl | MR
[5] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000). | Zbl | MR
[6] , and , Relaxation results for some free discontinuity problems. J. Reine Angew. Math. 458 (1995) 1-18. | Zbl | MR
[7] and , Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer. Math. 85 (2000) 609-646. | Zbl | MR
[8] , Approximation of free-discontinuity problems. Lect. Notes Math. 1694 (1998). | Zbl | MR
[9] A. Braides, Γ-convergence for beginners. Oxford University Press (2002). | Zbl | MR
[10] and , Non-local approximation of the Mumford-Shah functional. Calc. Var. 5 (1997) 293-322. | Zbl | MR
[11] and , On the non-local approximation of free-discontinuity problems. Commut. Partial Differ. Equ. 23 (1998) 817-829. | Zbl | MR
[12] and , Discrete approximation of the Mumford-Shah functional in dimension two. ESAIM : M2AN 33 (1999) 651-672. | Zbl | MR | Numdam
[13] , Sequence of non-local functionals which approximate free-discontinuity problems. Arch. R. Mech. Anal. 144 (1998) 357-402. | Zbl | MR
[14] , A finite element approximation of an image segmentation problem. Math. Models Methods Appl. Sci. 9 (1999) 243-259. | Zbl | MR
[15] and , Finite element approximation of non-isotropic free-discontinuity problems. Numer. Funct. Anal. Optim. 18 (1997) 921-940. | Zbl | MR
[16] and , Nonlocal approximation of nonisotropic free-discontinuity problems. SIAM J. Appl. Math. 59 (1999) 1507-1519. | Zbl | MR
[17] and , A density result in SBV with respect to non-isotropic energies. Nonlinear Anal. 38 (1999) 585-604. | Zbl | MR
[18] G. Dal Maso, An Introduction to Γ-Convergence. Birkhäuser, Boston (1993). | Zbl
[19] , Free discontinuity problems in calculus of variations, in Frontiers in pure and applied mathematics, edited by R. Dautray. A collection of papers dedicated to Jacques-Louis Lions on the occasion of his sixtieth birthday, Paris 1988. North-Holland Publishing Co., Amsterdam (1991) 55-62. | Zbl | MR
[20] , An approximation result for free discontinuity functionals by means of non-local energies. Math. Methods Appl. Sci. 31 (2008) 2133-2146. | MR
[21] and , Non local approximation of free-discontinuity functionals with linear growth : the one dimensional case. Ann. Mat. Pura Appl. 186 (2007) 722-744. | Zbl | MR
[22] and , Non local approximation of free-discontinuity problems with linear growth. ESAIM : COCV 13 (2007) 135-162. | Zbl | MR | Numdam
[23] , Sequences of singularly perturbed functionals generating free-discontinuity problems. SIAM J. Math. Anal. 35 (2003) 759-805. | Zbl | MR
[24] , The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional. Numer. Funct. Anal. Optim. 20 (1999) 957-982. | Zbl | MR
[25] , A non-local approximation of free discontinuity problems in SBV and SBD. Calc. Var. 25 (2006) 33-62. | Zbl | MR
Cité par Sources :





