We consider an evolution equation similar to that introduced by Vese in [Comm. Partial Diff. Eq. 24 (1999) 1573-1591] and whose solution converges in large time to the convex envelope of the initial datum. We give a stochastic control representation for the solution from which we deduce, under quite general assumptions that the convergence in the Lipschitz norm is in fact exponential in time.
Keywords: convex envelope, viscosity solutions, stochastic control representation, nonautonomous gradient flows
@article{COCV_2012__18_3_611_0,
author = {Carlier, Guillaume and Galichon, Alfred},
title = {Exponential convergence for a convexifying equation},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {611--620},
year = {2012},
publisher = {EDP Sciences},
volume = {18},
number = {3},
doi = {10.1051/cocv/2011163},
mrnumber = {3041657},
zbl = {1255.35041},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2011163/}
}
TY - JOUR AU - Carlier, Guillaume AU - Galichon, Alfred TI - Exponential convergence for a convexifying equation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 611 EP - 620 VL - 18 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2011163/ DO - 10.1051/cocv/2011163 LA - en ID - COCV_2012__18_3_611_0 ER -
%0 Journal Article %A Carlier, Guillaume %A Galichon, Alfred %T Exponential convergence for a convexifying equation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 611-620 %V 18 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2011163/ %R 10.1051/cocv/2011163 %G en %F COCV_2012__18_3_611_0
Carlier, Guillaume; Galichon, Alfred. Exponential convergence for a convexifying equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 611-620. doi: 10.1051/cocv/2011163
[1] , and , Convex viscosity solutions and state constraints. J. Math. Pures Appl. 76 (1997) 265-288. | Zbl | MR
[2] and , Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications 43. American Mathematical Society, Providence, RI (1995). | Zbl | MR
[3] , and , Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differential Geom. 33 (1991) 749-786. | Zbl | MR
[4] , and , User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1-67. | Zbl | MR
[5] and , Controlled Markov Processes and Viscosity Solutions, Graduate Studies in Mathematics 58. Applications of Mathematics, Springer-Verlag (1993). | Zbl | MR
[6] and , Differentiability of convex envelopes. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 725-728. | Zbl | MR
[7] , The convex envelope is the solution of a nonlinear obstacle problem. Proc. Amer. Math. Soc. 135 (2007) 1689-1694. | Zbl | MR
[8] , Computing the convex envelope using a nonlinear partial differential equation. Math. Mod. Methods Appl. Sci. 18 (2008) 759-780. | Zbl | MR
[9] and , The Dirichlet Problem for the Convex Envelope. Trans. Amer. Math. Soc. (to appear). | Zbl | MR
[10] and , Stochastic representation of mean curvature type geometric flows. Ann. Probab. 31 (2003) 1145-1165. | Zbl | MR
[11] , Stochastic control and application to Finance. Lecture Notes available at http://www.cmap.polytechnique.fr/˜touzi/.
[12] , A method to convexify functions via curve evolution. Comm. Partial Diff. Eq. 24 (1999) 1573-1591. | Zbl | MR
Cité par Sources :






