In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.
Keywords: Landau-Lifschitz equation, control, stabilization
@article{COCV_2012__18_1_1_0,
author = {Carbou, Gilles and Labb\'e, St\'ephane},
title = {Stabilization of walls for nano-wires of finite length},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {1--21},
year = {2012},
publisher = {EDP Sciences},
volume = {18},
number = {1},
doi = {10.1051/cocv/2010048},
mrnumber = {2887925},
zbl = {1235.35029},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2010048/}
}
TY - JOUR AU - Carbou, Gilles AU - Labbé, Stéphane TI - Stabilization of walls for nano-wires of finite length JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 1 EP - 21 VL - 18 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2010048/ DO - 10.1051/cocv/2010048 LA - en ID - COCV_2012__18_1_1_0 ER -
%0 Journal Article %A Carbou, Gilles %A Labbé, Stéphane %T Stabilization of walls for nano-wires of finite length %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 1-21 %V 18 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2010048/ %R 10.1051/cocv/2010048 %G en %F COCV_2012__18_1_1_0
Carbou, Gilles; Labbé, Stéphane. Stabilization of walls for nano-wires of finite length. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 1-21. doi: 10.1051/cocv/2010048
[1] , and , Néel and cross-tie wall energies for planar micromagnetic configurations. ESAIM : COCV 8 (2002) 31-68. | Zbl | MR | Numdam
[2] , Micromagnetics. Interscience Publisher, John Willey and Sons, New York (1963).
[3] , Regularity for critical points of a nonlocal energy. Calc. Var. 5 (1997) 409-433. | Zbl | MR
[4] , Thin layers in micromagnetism. Math. Models Methods Appl. Sci. 11 (2001) 1529-1546. | Zbl | MR
[5] and , Time average in micromagnetism. J. Differ. Equ. 147 (1998) 383-409. | Zbl | MR
[6] and , Regular solutions for Landau-Lifschitz equation in a bounded domain. Differential Integral Equations 14 (2001) 213-229. | Zbl | MR
[7] and , Regular solutions for Landau-Lifschitz equation in R3. Commun. Appl. Anal. 5 (2001) 17-30. | Zbl | MR
[8] and , Stability for static walls in ferromagnetic nanowires. Discrete Continous Dyn. Syst. Ser. B 6 (2006) 273-290. | Zbl | MR
[9] , and , Control of travelling walls in a ferromagnetic nanowire. Discrete Contin. Dyn. Syst. Ser. S 1 (2008) 51-59. | MR
[10] , , and , Magnetic microstructures - a paradigm of multiscale problems, in ICIAM 99 (Edinburgh), Oxford Univ. Press, Oxford (2000) 175-190. | Zbl
[11] and , Modélisation et simulation du comportement des matériaux ferromagnétiques. Matapli 66 (2001) 70-86.
[12] , Multidimensional stability of planar travelling waves. Trans. Amer. Math. Soc. 349 (1997) 257-269. | Zbl | MR
[13] , Travelling waves with a singularity in magnetic nanowires. Commun. Partial Diff. Equ. 34 (2009) 722-764. | Zbl | MR
[14] , Simulation numérique du comportement hyperfréquence des matériaux ferromagnétiques. Thèse de l'Université Paris 13, Paris (1998).
[15] and , Microwave polarisability of ferrite particles with non-uniform magnetization. J. Magn. Magn. Mater. 206 (1999) 93-105.
[16] and , Compactness, kinetic formulation, and entropies for a problem related to micromagnetics. Commun. Partial Diff. Equ. 28 (2003) 249-269. | Zbl | MR
[17] , Méthodes asymptotiques en ferromagnétisme. Thèse de l'Université Bordeaux 1, Bordeaux (2004).
[18] , and , Domain wall dynamics in nanowires. J. Magn. Magn. Mater. 242-245 (2002) 1061-1063.
[19] , On Landau Lifschitz equation for ferromagnetism. Japan Journal of Applied Mathematics 1 (1985) 69-84. | Zbl
[20] , Ferromagnetism, Encyclopedia of Physics XVIII/2. Springer-Verlag, Berlin (1966).
Cité par Sources :






