The aim of this paper is to provide a rigorous variational formulation for the detection of points in 2-d biological images. To this purpose we introduce a new functional whose minimizers give the points we want to detect. Then we define an approximating sequence of functionals for which we prove the Γ-convergence to the initial one.
Keywords: points detection, biological images, divergence-measure fields, p-capacity, Γ-convergence
@article{COCV_2011__17_4_909_0,
author = {Aubert, Gilles and Graziani, Daniele},
title = {Variational approximation for detecting point-like target problems},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {909--930},
year = {2011},
publisher = {EDP Sciences},
volume = {17},
number = {4},
doi = {10.1051/cocv/2010029},
mrnumber = {2859858},
zbl = {1238.49024},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2010029/}
}
TY - JOUR AU - Aubert, Gilles AU - Graziani, Daniele TI - Variational approximation for detecting point-like target problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 909 EP - 930 VL - 17 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2010029/ DO - 10.1051/cocv/2010029 LA - en ID - COCV_2011__17_4_909_0 ER -
%0 Journal Article %A Aubert, Gilles %A Graziani, Daniele %T Variational approximation for detecting point-like target problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 909-930 %V 17 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2010029/ %R 10.1051/cocv/2010029 %G en %F COCV_2011__17_4_909_0
Aubert, Gilles; Graziani, Daniele. Variational approximation for detecting point-like target problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 909-930. doi: 10.1051/cocv/2010029
[1] , and , Functions of bounded variation and free discontinuity problems. Oxford University Press, Oxford (2000). | Zbl | MR
[2] , Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135 (1983) 293-318. | Zbl | MR
[3] , and , Detecting codimension - Two objects in an image with Ginzburg-Landau models. Int. J. Comput. Vis. 65 (2005) 29-42. | Zbl
[4] , Variational approximation of functionals with curvatures and related properties. J. Conv. Anal. 4 (1997) 91-108. | Zbl | MR
[5] and , Approssimazione variazionale di funzionali con curvatura. Seminario di Analisi Matematica, Dipartimento di Matematica dell'Università di Bologna (1993).
[6] , and , Ginzburg-Landau Vortices. Birkäuser, Boston (1994). | Zbl | MR
[7] , Γ-convergence for beginners. Oxford University Press, New York (2000). | Zbl | MR
[8] and , Curvature theory of boundary phases: the two dimensional case. Interfaces Free Bound. 4 (2002) 345-370. | Zbl | MR
[9] and , Approximation by Γ-convergence of a curvature-depending functional in Visual Reconstruction. Comm. Pure Appl. Math. 59 (2006) 71-121. | Zbl | MR
[10] and , Continuity of Neumann linear elliptic problems on varying two-dimensionals bounded open sets. Comm. Partial Diff. Eq. 22 (1997) 811-840. | Zbl | MR
[11] and , Divergence-measure fields and conservation laws. Arch. Rational Mech. Anal. 147 (1999) 35-51. | Zbl
[12] and , On the theory of divergence-measure fields and its applications. Bol. Soc. Bras. Math. 32 (2001) 1-33. | Zbl | MR
[13] , Introduction to Γ-convergence. Birkhäuser, Boston (1993). | Zbl | MR
[14] , , and , Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999) 741-808. | Zbl | MR | Numdam
[15] , Some remarks on Γ-convergence and least square methods, in Composite Media and Homogenization Theory, G. Dal Maso and G.F. Dell'Antonio Eds., Birkhäuser, Boston (1991) 135-142. | Zbl
[16] and , Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. Natur. 58 (1975) 842-850. | Zbl | MR
[17] and , Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia 3 (1979) 63-101. | Zbl
[18] and , Measure Theory and Fine Properties of Functions. CRC Press (1992). | Zbl | MR
[19] , and , A formal Γ-convergence approach for the detection of points in 2-D images. SIAM J. Imaging Sci. (to appear). | Zbl | MR
[20] , and , Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford (1993). | Zbl | MR
[21] , The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123-142. | Zbl | MR
[22] and , Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. 14-B (1977) 285-299. | Zbl | MR
[23] and , On a modified conjecture of De Giorgi. Math. Zeitschrift 254 (2006) 675-714. | Zbl | MR
[24] , Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 180-258. | Zbl | MR | Numdam
[25] , Weakly Differentiable Functions. Springer-Verlag, New York (1989). | Zbl | MR
Cité par Sources :





