We prove that any Kantorovich potential for the cost function c = d2/2 on a Riemannian manifold (M, g) is locally semiconvex in the “region of interest”, without any compactness assumption on M, nor any assumption on its curvature. Such a region of interest is of full μ-measure as soon as the starting measure μ does not charge n - 1-dimensional rectifiable sets.
Keywords: Kantorovich potential, optimal transport, regularity
@article{COCV_2011__17_3_648_0,
author = {Figalli, Alessio and Gigli, Nicola},
title = {Local semiconvexity of {Kantorovich} potentials on non-compact manifolds},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {648--653},
year = {2011},
publisher = {EDP Sciences},
volume = {17},
number = {3},
doi = {10.1051/cocv/2010011},
mrnumber = {2826973},
zbl = {1228.49047},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2010011/}
}
TY - JOUR AU - Figalli, Alessio AU - Gigli, Nicola TI - Local semiconvexity of Kantorovich potentials on non-compact manifolds JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 648 EP - 653 VL - 17 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2010011/ DO - 10.1051/cocv/2010011 LA - en ID - COCV_2011__17_3_648_0 ER -
%0 Journal Article %A Figalli, Alessio %A Gigli, Nicola %T Local semiconvexity of Kantorovich potentials on non-compact manifolds %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 648-653 %V 17 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2010011/ %R 10.1051/cocv/2010011 %G en %F COCV_2011__17_3_648_0
Figalli, Alessio; Gigli, Nicola. Local semiconvexity of Kantorovich potentials on non-compact manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 3, pp. 648-653. doi: 10.1051/cocv/2010011
[1] , and , Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). | Zbl | MR
[2] , and , Gradient flows in metric spaces and in spaces of probability measures, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2005). | Zbl | MR
[3] , and , A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146 (2001) 219-257. | Zbl | MR
[4] and , Optimal transportation on non-compact manifolds. Israel J. Math. (to appear). | Zbl | MR
[5] , Existence, uniqueness, and regularity of optimal transport maps. SIAM J. Math. Anal. 39 (2007) 126-137. | Zbl | MR
[6] and , The geometry of optimal transportation. Acta Math. 177 (1996) 113-161. | Zbl | MR
[7] , Second order analysis on . Memoirs of the AMS (to appear), available at http://cvgmt.sns.it/cgi/get.cgi/papers/gig09/. | Zbl
[8] , Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11 (2001) 589-608. | Zbl | MR
[9] , Optimal transport, old and new, Grundlehren des mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 338. Springer-Verlag, Berlin-New York (2009). | Zbl | MR
Cité par Sources :






